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Supplementary Text 

Training and evaluating Deep DNAshape on alternative datasets 

In the manuscript, we discussed how to apply the Deep DNAshape model to DNA shape features derived 
from Monte-Carlo (MC) simulations. Based on our observation of Deep DNAshape performance on MC 
data, we concluded that the model architecture should extend to any data source. Therefore, we compiled 
an alternative dataset comprising DNA shape features obtained from experimentally solved structures, 
and a dataset with DNA shape features derived from a limited number of available MD simulations, to 
benchmark Deep DNAshape. We constructed the experimental dataset using a lightly curated list of PDB 
entries1 that includes protein-bound DNA structures and irregular DNA structures, among others. We 
believe that our model architecture can efficiently address any existing biases and artifacts in this dataset. 
After processing (see Supplementary Methods), DNA shape features were normalized and used to train 
the Deep DNAshape model, resulting in the Deep DNAshape (Expt) variant. Concurrently, we used DNA 
shape data from the Parmbsc1 database2, comprising only of B-DNA duplexes, to train another Deep 
DNAshape variant, Deep DNAshape (MD), despite the limited availability of MD data. 

We compared DNA shape predicted by our MC-derived Deep DNAshape, Deep DNAshape (Expt), and 
Deep DNAshape (MD) models in several ways, assuming that the trained Deep DNAshape model can 
infer neighboring effects as accurately as possible. As the raw underlying data differ in sequence 
components, they could only be compared using constructed query tables, a method previously 
validated3.   

Initially, we directly compared the ability of the models to predict k-mers (minor groove width (MGW) and 
intra-base-pair (bp) feature predictions, on pentamers; inter-bp feature predictions on hexamers). We 
calculated correlations of the core DNA shape across all k-mers in the same order between models 
(Supplementary Table 3). We also compiled average inter-bp shape features across these models for the 
10 unique dinucleotides (Supplementary Figure 4). The Deep DNAshape (Expt) variant performs almost 
identically compared to the underlying experimental PDB data. Deep DNAshape (MD) generally matches 
the experimental data, barring a slight overestimation of the feature Slide. Although Deep DNAshape 
underestimates Roll and Slide values compared to experimental data, the Roll values are better 
correlated with Deep DNAshape (Expt) compared to Deep DNAshape (MD) (Supplementary Table 3).  

Next, we examined whether features predicted by the variants enhance the performance of the shape-
augmented TF-DNA binding prediction models (multiple linear regression (MLR) models). Estimating 
longer-range neighboring effects is quite challenging with noisy or low-coverage data, even with Deep 
DNAshape’s comprehensive control of overfitting. We compared performances of 1mer+4shape and 
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1mer+13shape MLR models (Supplementary Figure 22). Up to shape layer 4, the performances of Deep 
DNAshape (Expt), Deep DNAshape (MD), and Deep DNAshape (MC) are statistically indistinguishable. 
However, when the layer number further increases, the performance of Deep DNAshape remains 
constant, whereas the performances of the other two variants exhibit changes (MD in 1mer+4shape 
model and Expt in both models). As per the design of the Deep DNAshape architecture, early layers do 
not encompass all long-range neighboring effects, meaning we should focus on layers 3, 4, and 5. At 
layer 5, Deep DNAshape outperforms variants trained with other data sources. MD simulations also 
provide the capacity to learn DNA shape fluctuations. However, the performance of Deep DNAshape 
(MD) for the 1mer+4shape+FL model suffers dramatically in deeper layers (Supplementary Figure 22), 
likely due to the low coverage of the underlying MD data.  

Limitations and Discussion 

Successful training of Deep DNAshape on structural data acquired from experimentally solved structures 
and MD simulations confirms the generality and robustness of the Deep DNAshape model architecture. 
However, experimentally solved structures contain long DNA sequences bound by proteins only in certain 
circumstances, possibly deforming the DNA structures to a certain extent. An example is the nucleosome 
structure4 of which many different copies exist in the PDB. This causes Deep DNAshape (Expt) models to 
learn incorrect neighboring effects, leading to worse performance in the deeper layers. Furthermore, 
available data from MD simulations is currently still limited with many missing values (Supplementary 
Figure 8), causing Deep DNAshape (MD) to learn incomplete neighboring effects from these missing 
values. Use of MC simulations as our underlying shape source represents at this point a favorable 
balance of data quality and quantity. Transitioning to MD simulations for training Deep DNAshape will 
likely become an alternative in the future, provided a sufficiently larger number of MD simulations could 
be procured.  

Supplementary Methods 

Acquisition, analysis of experimentally solved structures, and pre-processing for Deep DNAshape 
(Expt) 

Biological assemblies of PDB IDs mentioned in reference1 were downloaded from the PDB. Duplex DNA 
helical sections were extracted from all PDB files using X3DNA5. DNA shape features were calculated 
using Curves (version 5.3), where applicable, resulting in a total of 3,204 PDB IDs included (4,034 for 
biological assemblies). Some bases for which DNA shape could not be computed resulted in NaN values. 
Numerical shape features in regions containing the abnormal DNA helix were set to NaN. Criteria were 
based on the original DNAshape paper6, in which regions were disregarded if one of the following 
conditions existed within 3 bp: (i) MGW > 8.5 Å or < 1.5 Å; (ii) HelT > 45°; and (iii) |Roll| > 20°. Chemically 
modified bases were converted to the original regular base in the final file. Any other irregular bases 
present in the dataset were set to unknown (N). Shape features of both strands were extracted. 
Calculated DNA shape features, including features of the reverse complements, were merged. If more 
than one copy of DNA exists, the values were averaged and NaN values were ignored. This protocol was 
adopted from6.  

Structures may have very short DNA sequences resulting in more incomputable groove or inter-bp 
features than intra-bp features. After preprocessing these structures and merging repeated sequences, 
we collected 2,129 sequences of available MGW values (about 15.47 bp per sequence), 2,269 
sequences of available inter-bp shape feature values (about 15.02 bp per sequence) and 2,367 
sequences of available intra-bp shape features (about 14.89 bp per sequence). For comparison 
purposes, average inter-bp shape features were calculated from this training data for each of the 10 
unique dinucleotides.  

Compiled shape training data were then pre-processed using normalization (Methods). However, due to 
volatility of the dataset, we adjusted the percentile from 1 to 5: 



 3 

𝑆" = (𝑆 − 𝑆&)/(𝑆!"# − 𝑆$!"#)																													( 1 ) 

Here, 𝑆 represents the DNA shape feature analyzed from the experimentally solved structural dataset. 𝑆& 
denotes the median of the DNA shape feature values within the dataset, while 𝑆!"# and 𝑆$!"# mark the 5th 
percentile and 95th percentile of the sorted DNA shape feature values, respectively. 

 

Acquisition of MD simulation DNA shape data 

DNA shape data files, labeled with tags of “DNA” (DNA only) and “duplex”, were downloaded from 
<https://mmb.irbbarcelona.org/ParmBSC1/>. Files were merged and aggregated with the addition of 
reverse complements. We collected 137 sequences for MGW (about 15.89 bp per sequence), 139 
sequences containing inter-bp features (about 15.92 bp per sequence) and 138 sequences containing 
intra-bp features (about 15.92 bp per sequence).  

 

 

Supplementary Tables and Figures 

 

Supplementary Table 1. Correlation of inter-bp features predicted by Deep DNAshape and acquired 
from MD simulations, for all 136 unique tetramers7. Tetramer features from Deep DNAshape are 
calculated by predicting and averaging from all 8-mers. 

Inter-bp features Spearman’s rank correlation of 
static shape 

Spearman’s rank correlation of 
shape fluctuation 

Shift 0.23 0.22 
Slide 0.51 0.53 
Rise 0.41 0.78 
Tilt 0.59 0.85 
Roll 0.79 0.32 
HelT 0.44 0.41 
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Supplementary Table 2. Pearson’s correlations of DNA shape features predicted by Deep DNAshape 
and reconstructed query table from MC simulations. Reconstructed hexamer and 7-mer query tables 
contain extensive missing values. There are 10 possible dinucleotides. We show NpN in this table for 
easier representation. However, the generated query table for hexamers does not account for all 
dinucleotides; hence, the lower correlation. The pentamer query table came with the DNAshape method. 
“Core” means the central bp or bp step from the k-mer query table.  

Shape feature 
Against tetramer Against pentamer Against hexamer Against heptamer 
Core: NpN Core: 

A/T 
Core: 
C/G 

Core: NpN Core: 
A/T 

Core: 
C/G 

MGW N/A 0.98 0.98 N/A 0.96 0.96 
Shift 0.99 

N/A 

0.82 

N/A 

Slide 0.98 0.87 
Rise 0.99 0.97 
Tilt 0.99 0.78 
Roll 0.98 0.68 
HelT 1.00 0.91 
Shear 

N/A 

0.97 0.96 

N/A 

0.94 0.92 
Stretch 0.78 0.94 0.77 0.87 
Stagger 0.98 0.99 0.97 0.98 
Buckle 0.99 0.99 0.98 0.99 
ProT 0.99 1.00 0.97 0.98 
Opening 0.93 0.97 0.87 0.92 
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Supplementary Table 3. Pearson’s correlations of DNA shape features predicted by Deep DNAshape 
and its variants. All unique pentamers (512 sequences) and hexamers (2,080 sequences) are used to 
predict DNA shape. Correlations are calculated by the concatenated predictions as a vector given the 
same order of sequences.  

[See Supplementary_Table3.xlsx] 
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Supplementary Table 4. Pearson’s correlations of average DNA shape predicted by Deep DNAshape or 
pentamer-based DNAshape for four different Drosophila species.  

MGW derived from Deep DNAshape 

Species D. melanogaster D. simulans D. sechellia D. pseudoobscura 
D. melanogaster 1.00 0.95 0.96 0.93 
D. simulans  1.00 0.99 0.97 
D. sechellia  1.00 0.97 
D. pseudoobscura  1.00 

 
MGW derived from pentamer-based DNAshape 

Species D. melanogaster D. simulans D. sechellia D. pseudoobscura 
D. melanogaster 1.00 0.93 0.91 0.91 
D. simulans  1.00 0.97 0.95 
D. sechellia  1.00 0.95 
D. pseudoobscura  1.00 

 
ProT derived from Deep DNAshape 

Species D. melanogaster D. simulans D. sechellia D. pseudoobscura 
D. melanogaster 1.00 0.94 0.95 0.91 
D. simulans  1.00 0.98 0.95 
D. sechellia  1.00 0.95 
D. pseudoobscura  1.00 

 
ProT derived from pentamer-based DNAshape 

Species D. melanogaster D. simulans D. sechellia D. pseudoobscura 
D. melanogaster 1.00 0.93 0.90 0.89 
D. simulans  1.00 0.96 0.94 
D. sechellia  1.00 0.93 
D. pseudoobscura  1.00 

 

Roll derived from Deep DNAshape 

Species D. melanogaster D. simulans D. sechellia D. pseudoobscura 
D. melanogaster 1.00 0.97 0.98 0.97 
D. simulans  1.00 0.99 0.99 
D. sechellia  1.00 0.98 
D. pseudoobscura  1.00 

 
Roll derived from pentamer-based DNAshape 

Species D. melanogaster D. simulans D. sechellia D. pseudoobscura 
D. melanogaster 1.00 0.94 0.95 0.94 
D. simulans  1.00 0.97 0.97 
D. sechellia  1.00 0.96 
D. pseudoobscura  1.00 

 
HelT derived from Deep DNAshape 

Species D. melanogaster D. simulans D. sechellia D. pseudoobscura 
D. melanogaster 1.00 0.94 0.96 0.95 
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D. simulans  1.00 0.98 0.96 
D. sechellia  1.00 0.96 
D. pseudoobscura  1.00 

 
HelT derived from pentamer-based DNAshape 

Species D. melanogaster D. simulans D. sechellia D. pseudoobscura 
D. melanogaster 1.00 0.93 0.91 0.93 
D. simulans  1.00 0.95 0.94 
D. sechellia  1.00 0.94 
D. pseudoobscura  1.00 
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Supplementary Figure 1. Deep DNAshape architecture. 

a) Overview of shape layer. Features (stored in nodes) are used as input to the shape layer. Before the 
shape layer, nodes are first transformed from one-hot encoding of mono- or dinucleotides through one 
self-convolution layer into features. Nodes are interconnected through edges in the data structure. New 
features (stored in nodes, considering the two neighboring nodes) are the output of the shape layer. 

b) Detailed parallel computation schema for shape layer.  

c) Calculation in shape layer. Features from neighboring nodes are collected, aggregated by trainable 
equation (see Methods), and gated by a trainable GRU cell to generate the new feature.  

d) Dropout and average layer for DNA shape output.  
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Supplementary Figure 2. Training curves for four DNA shape features (Roll, ProT, MGW, and 
HelT), for a training and validation split (80/20 split). “Loss” represents training loss of mean absolute 
error (MAE). “ValLoss” represents the MAE loss on validation set. “self” and “1” to “7” mean different 
layers outputted from the model. Black horizontal line is a reference loss, as if the same validation data 
were to be predicted by the pentamer-based DNAshape method3.  
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Supplementary Figure 3. Training curves for four DNA shape (Roll, ProT, MGW, and HelT) 
fluctuation values, for a training and validation split (80/20 split). “Loss” represents the training loss 
of MAE. “ValLoss” represents the MAE loss on validation set. “self” and “1” to “7” mean different layers 
outputted from the model. Reference from the pentamer-based DNAshape method does not exist.  
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Supplementary Figure 4. Averaged inter-base-pair shape features for the 10 dinucleotides.  

Shown are DNA shape features of all hexamers (2,080 sequences) predicted by the Deep DNAshape 
model and its variants, layer 2. PDB averages are calculated from filtered PDB entries (see 
Supplementary Methods). Horizontal lines are averaged values among the 10 dinucleotides for each 
model. Slide and Roll values are underestimated by Deep DNAshape (MC) compared to PDB average. 
Slide values are overestimated by Deep DNAshape (MD). Values are jittered horizontally to reveal minor 
difference. Correlations of the 2,080 hexamers can be found in Table S3.  
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Supplementary Figure 5. Heatmaps showing ProT values at central position for all possible 7-
mers. Upper two subpanels show ProT values as if we had constructed a 7-mer query table from 
available MC simulations directly. Lower two subpanels show ProT values predicted by Deep DNAshape 
method (layer 3) for all possible 7-mers. Left two subpanels show all sequence with ‘A’ base in the center. 
Right two subpanels show all sequences with ‘C’ base in the center. ‘_’ represents A, C, G, and T in 
sequential order. For example, top left grid represents ProT value for AAAATTT in the central position.  
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Supplementary Figure 6. Heatmaps showing Roll values at central position for all possible 6-mers. 
Upper two subpanels show Roll values as if we had constructed a 6-mer query table from available MC 
simulations directly. Lower two subpanels show Roll values predicted by the Deep DNAshape method 
(layer 3) for all possible 6-mers. Left two subpanels show all sequences with ‘AT’ dinucleotides in the 
center. Right two subpanels show all sequences with ‘CG’ dinucleotides in the center. For example, top 
left grid represents Roll value for AAATTT in the central position. 
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Supplementary Figure 7. Heatmaps showing HelT values at central position for all possible 6-
mers. Upper two subpanels show HelT values as if we had constructed a 6-mer query table from 
available MC simulations directly. Lower two subpanels show HelT values predicted by Deep DNAshape 
method (layer 2) for all possible 6-mers. Left two subpanels show all sequences with ‘AT’ dinucleotides in 
middle. Right two subpanels show all sequences with ‘CG’ dinucleotides in middle. For example, top left 
grid represents HelT value for AAATTT in the central position. 
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Supplementary Figure 8. MD version of heatmaps showing MGW values at central position for all 
possible 5-mers. Upper two subpanels show MGW values as if we had constructed a 5-mer query table 
from available MD simulations directly. Lower two subpanels show MGW values predicted by Deep 
DNAshape (MD) method (layer 2) for all possible 5-mers. Left two subpanels show all sequences with ‘A’ 
base in the center. Right two subpanels show all sequences with ‘C’ base in the center.  

 

  



 16 

 
Supplementary Figure 9. Comparison between naïve interpolation and Deep DNAshape for 
generating heptamer query table from training data. Patch showing MGW for all possible NNGATNN 
(N can be any of A, C, G, or T) sequences is selected for comparison in right bottom panels. Deep 
DNAshape provides detailed, unbiased information on effects of flanking regions compared to 
interpolated version.  
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Supplementary Figure 10. Predicted DNA shape features for cores (shown in legend), affected by 
all possible 4-bp of flanking regions. Features are predicted by Deep DNAshape method (layer 4). 
MGW is a groove feature assigned to mononucleotides, and ProT is an intra-bp feature. Roll and HelT 
are inter-bp features assigned to dinucleotides. Histograms are generated from all possible 9-mers for 
MGW and ProT, 10-mers for Roll and HelT.  
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Supplementary Figure 11. MGW-FL (minor groove width fluctuations) predicted by Deep 
DNAshape (layer 4) for all possible random sequences with fixed 5’ and 3’ caps. Left panel is 
capped by ‘GCGC’. Right panel is capped by ‘AAAA’. Center line indicates the median. Box limits are 75th 
and 25th percentiles. The whiskers extend 1.5 times the IQR from the top and bottom of the box. Outliers 
are removed in boxplots. Number of samples is 16,384 for all combinations of 7-mers.  
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Supplementary Figure 12. MGW predicted by pentamer-based DNAshape or Deep DNAshape 
(layer 4), for protein Mad2 (Mad2-Max heterodimer) and DNA binding data, in order of relative 
binding affinity. Color represents DNA shape values. Data are aligned with core binding site. Only top 
25% of binding data are used.  
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Supplementary Figure 13. MGW values predicted by pentamer-based DNAshape or Deep 
DNAshape (layer 4), for protein c-Myc (c-Myc-Max heterodimer) and DNA binding data, in order of 
relative binding affinity. Color represents DNA shape values. Data are aligned with core binding site. 
Only top 25% of binding data are used.  
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Supplementary Figure 14. Predicted Roll and Roll-FL values for Max, c-Myc and Mad2 binding 
data, compared to relative binding affinities from gcPBM and HT-SELEX experiment. Data is filtered 
with ‘CACGTG’ as the core region. Roll and Roll-FL features are predicted by Deep DNAshape, layer 5, 
for the central ‘CG’ bp step. Negative correlation can be found in these features. 

a) Max homodimer data from gcPBM experiment. 
b) Max homodimer data from HT-SELEX experiment. 
c) c-Myc-Max heterodimer data from gcPBM experiment. 
d) Mad2-Max heterodimer data from gcPBM experiment. 
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Supplementary Figure 15. Predicted Roll values for Max, c-Myc, and Mad2 binding data from 
gcPBM experiments, compared to the signal intensity (relative binding affinity in gcPBM).  

a-c) Roll shape features are predicted by Deep DNAshape (Expt), layer 4. Negative correlation can be 
found in these features. 

b-f) Roll shape features are predicted by Deep DNAshape (MD), layer 4.  
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Supplementary Figure 16. Proposed binding mode of bHLH dimer using Roll readout to 
distinguish the same high-affinity binding sites.  

a) bHLH dimer binds to high-affinity E-box binding sites ‘CACGTG’, where Roll values in the core 
(affected by the flanking regions) are favored. 

b) bHLH dimer binds to the same high-affinity E-box binding sites ‘CACGTG’ with lowered binding affinity, 
where Roll values in the core (affected by the flanking regions) are less favored.  
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Supplementary Figure 17. R2 comparison between 1mer+13shape+SD (pentamer-based 
DNAshape) and 1mer+13shape+FL (Deep DNAshape). SD values from pentamer-based DNAshape 
are calculated based on statistics when compiling the raw values in the simulation data. FL values 
predicted by Deep DNAshape are the real shape fluctuation values encountered during simulation.  
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Supplementary Figure 18. 𝑹𝟐 performance of various MLR models on predicting collections of TF-
DNA binding specificities from multiple experimental data.  

Shape layer number indicates which depth of shape layer was used in the Deep DNAshape models to 
predict DNA shape features. Significant performance differences were only found in deeper layers, where 
Deep DNAshape on MC data nearly always showed the best performance. Center line indicates median. 
Box limits are 75th and 25th percentiles. Whiskers extend 1.5 times the inter-quartile range from the top 
and bottom of the box. Outliers are removed in boxplots. Number of TF-DNA data is 240 from gcPBM, 
SELEX-seq, and HT-SELEX datasets. 
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Supplementary Figure 19. Averaged DNA shape features predicted for transcription start sites 
(TSSs) from four different Drosophila species8. 
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