Supporting Information

CRISPR-Cas9 Activities with Truncated 16-Nucleotide RNA Guides are Tuned by Target Duplex Stability Beyond the RNA/DNA Hybrid

Yue Li,^{†,§} Brendon H. Cooper,[‡] Yukang Liu,[†] Difei Wu,[†] Xiaojun Zhang,[†] Remo Rohs,^{†,‡} Peter Z. Qin^{†,*}

[†]Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA

[‡]Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA

[§]Present address: FutureGen Biopharmaceutical Co., Ltd, Beijing 102629, China

*Corresponding author: Peter Z. Qin, TRF 119, 3430 S. Vermont Ave., Los Angeles, California 90089, USA; Tel: (213) 821-2461; Fax: (213) 740-2701; Email: pzq@usc.edu

Table of Contents

S1. Additional information on DNA substrates

S1.1. Additional information on target DNA sequences

S1.2. Peripheral DNA sequences beyond the protospacer have no impact on measured Cas9 cleavage rate

S2. Additional information on correlating activities of 16-nucleotide guides with DNA sequences beyond the RNA/DNA hybrid

S2.1. Thermodynamic parameters of the PAM+(17-20) DNA duplex segment

S2.2. Impacts of single-stranded DNA property at the PAM-distal NTS segment on Cas9 cleavage rate

S3. Additional information on 2-amino-purine fluorescence measurements

S4. Dependence of activities of 16-nucleotide guides on KCI concentration

S5. Additional information on impact of varying sequence of the 16-nt RNA guide

S1. Additional information on DNA substrates

S1.1: Additional information on target DNA sequences

Figures S1 shows a schematic of the DNA target substrates cloned into the pUC19 plasmid. Additional details on primers used to generate these clones are listed in Table S1.

Figure S1. Schematic representation of the substrate DNA cloned into pUC19 vector between the *HindIII* and *BamHI* restriction sites.

Т	arget	PAM+(16-21) sequence ^(a)	Primer	Sequence (5'→3') ^(b)
	0	5'-CTATAT-3'	P5-1_a_For	CCACATGGCATTCCACTT <mark>CTATAT</mark> GGCATCCTTCCACTC
1	STATA	3'-g <mark>atat</mark> a-5'	P5-1_a_Rev	GAGTGGAAGGATGCC <mark>ATATAG</mark> AAGTGGAATGCCATGTGGGC
	6	5'-CTTATT-3'	P5-1-10_For	CCACATGGCATTCCACTT <mark>CTTATT</mark> GGCATCCTTCCACTC
2	STTAT	3'-g <mark>aata</mark> a-5'	P5-1-10_Rev	GAGTGGAAGGATGCC <mark>AATAAG</mark> AAGTGGAATGCCATGTGG
2	6	5'-C <mark>TAAA</mark> T-3'	P5-1-8_For	CCACATGGCATTCCACTT <mark>CTAAAT</mark> GGCATCCTTCCACTC
3	STAAA	3'-g <mark>attt</mark> a-5'	P5-1-8_Rev	GAGTGGAAGGATGCC <mark>ATTTAG</mark> AAGTGGAATGCCATGTGG
4	6	5'-C <mark>TAAT</mark> T-3'	P5-1-9_For	CCACATGGCATTCCACTT <mark>CTAATT</mark> GGCATCCTTCCACTC
4	STAAT	3'-g <mark>atta</mark> a-5'	P5-1-9_Rev	GAGTGGAAGGATGCC <mark>AATTAG</mark> AAGTGGAATGCCATGTGG
Б	S	5'-CTTTTT-3'	P5-1-d_For	CCACATGGCATTCCACTT <mark>CTTTTT</mark> GGCATCCTTCCACTC
5	37777	3'-g <mark>aaaa</mark> a-5'	P5-1-d_Rev	GAGTGGAAGGATGCC <mark>AAAAAG</mark> AAGTGGAATGCCATGTGGGC
6	S -1.01	5'-CTAGAT-3'	P5-1-11_For	11_For CCACATGGCATTCCACTTCTAGATGGCATCCTTCCACTC
0	STAGA	3'-g <mark>atct</mark> a-5'	P5-1-11_Rev	GAGTGGAAGGATGCC <mark>ATCTAG</mark> AAGTGGAATGCCATGTGG
7	S	5'-CAAAAT-3'	P5-1-e_For	CCACATGGCATTCCACTT <mark>CAAAAT</mark> GGCATCCTTCCACTC
'	JAAAA	3'-gtttta-5'	P5-1-e_Rev	GAGTGGAAGGATGCC <mark>ATTTTG</mark> AAGTGGAATGCCATGTGGGC
0	S-11-1	5'-C <mark>TATG</mark> T-3'	P5-1-14_For	CCACATGGCATTCCACTT <mark>CTATGT</mark> GGCATCCTTCCACTC
0	STATG	3'-g <mark>atac</mark> a-5'	P5-1-14_Rev	GAGTGGAAGGATGCC <mark>ACATAG</mark> AAGTGGAATGCCATGTGG
0	Saura	5'-C <mark>GATA</mark> T-3'	P5-1-13_For	CCACATGGCATTCCACTT <mark>CGATAT</mark> GGCATCCTTCCACTC
9	JGATA	3'-g <mark>ctat</mark> a-5'	P5-1-13_Rev	GAGTGGAAGGATGCC <mark>ATATCG</mark> AAGTGGAATGCCATGTGG
10	Street	5'-CTTCTT-3'	P5-1-18_For	CCACATGGCATTCCACTTCTTCTTGGCATCCTTCCACTC
10	SITCT	3'-g <mark>aaga</mark> a-5'	P5-1-18_Rev	GAGTGGAAGGATGCC <mark>AAGAAG</mark> AAGTGGAATGCCATGTGG
11	Succ	5'-CAAGAT-3'	P5-1-12_For	CCACATGGCATTCCACTTCAAGATGGCATCCTTCCACTC
	JAAGA	3'-g <mark>ttct</mark> a-5'	P5-1-12_Rev	GAGTGGAAGGATGCC <mark>ATCTTG</mark> AAGTGGAATGCCATGTGG

Table S1. Primers for generating Cas9 substrates by mutagenesis using pUC19

12 5	S	5'-CTTGTT-3'	P5-1-17_For	CCACATGGCATTCCACTT <mark>CTTGTT</mark> GGCATCCTTCCACTC
12	STIGT	3'-g <mark>aaca</mark> a-5'	P5-1-17_Rev	GAGTGGAAGGATGCC <mark>AACAAG</mark> AAGTGGAATGCCATGTGG
12	Surra	5'-C <mark>ATTG</mark> T-3'	P5-1-16_For	CCACATGGCATTCCACTT <mark>CATTGT</mark> GGCATCCTTCCACTC
13	JATTG	3'-g <mark>taac</mark> a-5'	P5-1-16_Rev	GAGTGGAAGGATGCC <mark>ACAATG</mark> AAGTGGAATGCCATGTGG
11	S	5'-C <mark>TCAC</mark> T-3'	P5-1_For	CCACATGGCATTCCACTT <mark>CTCACT</mark> GGCATCCTTCC
14	STCAC	3'-g <mark>agtg</mark> a-5'	P5-1_Rev	GAGTGGAAGGATGCC <mark>AGTGAG</mark> AAGTGGAATGCCATG
15	S	5'-C <mark>AGAC</mark> T-3'	P5-1-20_For	CCACATGGCATTCCACTT <mark>CAGACT</mark> GGCATCCTTCCACTC
15	JAGAC	3'-gtctga-5'	P5-1-20_Rev	GAGTGGAAGGATGCC <mark>AGTCTG</mark> AAGTGGAATGCCATGTGG
16	6	5'-C <mark>AGCT</mark> T-3'	P5-1-21_For	CCACATGGCATTCCACTT <mark>CAGCTT</mark> GGCATCCTTCCACTC
10	SAGCT	3'-g <mark>tcga</mark> a-5'	P5-1-21_Rev	GAGTGGAAGGATGCC <mark>AAGCTG</mark> AAGTGGAATGCCATGTGG
17	S	5'-C <mark>CCTC</mark> T-3'	P5-1-26_For	CCACATGGCATTCCACTT <mark>CCCTCT</mark> GGCATCCTTCCACTC
17	SCCTC	3'-g <mark>ggag</mark> a-5'	P5-1-26_Rev	GAGTGGAAGGATGCC <mark>AGAGGG</mark> AAGTGGAATGCCATGTGG
10	S	5'-C <mark>GGTC</mark> T-3'	P5-1-25_For	CCACATGGCATTCCACTT <mark>CGGTCT</mark> GGCATCCTTCCACTC
10	18 SGGTC 3'-gccaga-5'		P5-1-25_Rev	GAGTGGAAGGATGCC <mark>AGACCG</mark> AAGTGGAATGCCATGTGG
10	Store	5'-C <mark>TCGC</mark> T-3'	P5-1-27_For	CCACATGGCATTCCACTT <mark>CTCGCT</mark> GGCATCCTTCCACTC
19	SICGC	3'-g <mark>agcg</mark> a-5'	P5-1-27_For CCACATGGCATTO 5' P5-1-27_Rev GAGTGGAAGGATO	GAGTGGAAGGATGCC <mark>AGCGAG</mark> AAGTGGAATGCCATGTGG
20	Secor	5'-C <mark>CGCT</mark> T-3'	P5-1-29_For	CCACATGGCATTCCACTTCCGCTTGGCATCCTTCCACTC
20	JUGUT	3'-g <mark>gcga</mark> a-5'	P5-1-29_Rev	GAGTGGAAGGATGCC <mark>AAGCGG</mark> AAGTGGAATGCCATGTGG
21	Saraa	5'-C <mark>GTCG</mark> T-3'	P5-1-28_For	CCACATGGCATTCCACTTCCGTCGTGGCATCCTTCCACTC
21	JGICG	3'-g <mark>cagc</mark> a-5'	P5-1-28_Rev	GAGTGGAAGGATGCC <mark>ACGACG</mark> AAGTGGAATGCCATGTGG
22	5'-CCCCCT-3'		P5-1-f_For	CCACATGGCATTCCACTT <mark>CCCCCT</mark> GGCATCCTTCCACTC
~~	30000	3'-g <mark>gggg</mark> a-5'	P5-1-f_Rev	GAGTGGAAGGATGCC <mark>AGGGGGG</mark> AAGTGGAATGCCATGTGGGC
23	Saaaa	5'-CGGGGT-3' 3'-gcccca-5'	P5-1-g_For	CCACATGGCATTCCACTTCGGGGGTGGCATCCTTCCACTC
23	Jeege		P5-1-g_Rev	GAGTGGAAGGATGCCACCCCGAAGTGGAATGCCATGTGGGC
24	Saaaa	5'-C <mark>CGGG</mark> T-3'	P5-1-30_For	CCACATGGCATTCCACTT <mark>CCGGGT</mark> GGCATCCTTCCACTC
24	JCGGG	3'-g <mark>gccc</mark> a-5'	P5-1-30_Rev	GAGTGGAAGGATGCCACCGGAAGTGGAATGCCATGTGG
25	Same	5'-C <mark>GCCG</mark> T-3'	P5-1-32_For	CCACATGGCATTCCACTTCCACTC
20	JGCCG	3'-g <mark>cggc</mark> a-5'	P5-1-32_Rev	GAGTGGAAGGATGCCACGGCGAAGTGGAATGCCATGTGG
26	Saaaa	5'-C <mark>GCGG</mark> T-3'	P5-1_b_For	CCACATGGCATTCCACTTCCGCGGTGGCATCCTTCCACTC
20	JGCGG	3'-g <mark>cgcc</mark> a-5'	P5-1_b_Rev	GAGTGGAAGGATGCC <mark>ACCGCG</mark> AAGTGGAATGCCATGTGGGC

(a) TS sequence is shown on top with upper-case letters, and NTS sequence is shown at the bottom with lower-case letters. Variable sequences are indicated in red.

(b) Sequences corresponding to the PAM+(16-21) segment are highlighted in yellow.

S1.2. Peripheral DNA sequences beyond the protospacer have no impact on measured Cas9 cleavage rate

Figure S2 shows cleavage data on DNA target embedded either in a *Scal* linearized pUC19 plasmid (Figure S1, Table S1), or a ~700 base-pair fragment obtained by PCR amplification of exon 3 of the human EMX1 gene (PCR products). The data show the measured cleavage rates are not impacted by the peripheral DNA sequences beyond the PAM and the 20-nt protospacer.

Figure S2. Assessing impact on measured cleavage rates by peripheral DNA sequences beyond the 20-nucleotide protospacer. Two sequences were tested, one with small $\Delta G_{NN(17-20)}^{0}$ (top panels), and the other with large $\Delta G_{NN(17-20)}^{0}$ (bottom panels). For both sequences, the cleavage rate determined using linearized plasmid and using PCR products are very similar.

S2. Additional information on correlating activities of 16-nucleotide guides with DNA sequences beyond the RNA/DNA hybrid

S2.1. Thermodynamic parameters of the PAM+(17-20) DNA duplex segment

Table S2 lists the thermodynamic parameters of the PAM+(17-20) DNA segment for the 26 target DNA substrates (Table S1). Note that ΔH^0 and ΔS^0 values were calculated according to the nearest-neighbor parameters obtained in 1M NaCl, while the Cas9 cleavage reactions were carried out in a buffer containing 100 mM KCl and 5 mM MgCl₂ (Main Text, Methods). However, such differences in the salt concentration result in an offset of ΔG_{NN}^0 values that is constant for all the 26 substrates,¹ which is not expected to impact the linear regression analysis on the correlation between $\ln(k_{cat})$ and ΔG_{NN}^0 .

Target DAMI(16.21)		le (b)		Duplex Stability	NTS Flexibility		
		sequence ^(a)	(\min^{-1})	$\Delta H^0_{(17-20)}^{(c)}$	$\Delta S^{0}_{(17-20)}$ ^(c)	$\Delta G_{NN(17-20)}^{0}(d)$	$\Delta G_{nts(17-20)}^{0}^{(e)}$
	-	5'-CTATAT-3'		(kcal/mol)	(cal/mol/K)	(Kcal/mol)	
1	Stata	3'-gatata-5'	1.29±0.05	31.7	90.7	3.57	7.4
2	STTAT	5'-CTTATT-3' 3'-gaataa-5'	0.51±0.02	35.7	100.6	4.50	7.4
3	Staaa	5'-CTAAAT-3' 3'-gattta-5'	0.74±0.04	35.7	100.6	4.50	6.6
4	STAAT	5'-CTAATT-3' 3'-gattaa-5'	0.94±0.03	35.7	100.6	4.50	7.0
5	STTTT	5'-CTTTTT-3' 3'-gaaaaa-5'	0.14±0.01	39.7	110.5	5.43	7.4
6	Staga	5'-CTAGAT-3' 3'-gatcta-5'	0.94±0.09	32.7	89.8	4.85	7.4
7	Saaaa	5'-CAAAAT-3' 3'-gtttta-5'	0.50±0.02	39.1	108.9	5.32	6.1
8	STATG	5'-CTATGT-3' 3'-gataca-5'	1.18±0.03	34.9	95.7	5.22	7.6
9	Sgata	5'-CGATAT-3' 3'-gctata-5'	0.29±0.10	37.1	101.9	5.50	7.1
10	STTCT	5'-CTTCTT-3' 3'-gaagaa-5'	0.19±0.01	36.7	99.7	5.78	8.2
11	Saaga	5'-CAAGAT-3' 3'-gttcta-5'	0.83±0.12	36.1	98.1	5.67	6.9
12	STTGT	5'-CTTGTT-3' 3'-gaacaa-5'	0.25±0.02	38.9	105.6	6.15	7.6
13	SATTG	5'-CATTGT-3' 3'-gtaaca-5'	0.74±0.05	38.3	104.0	6.04	7.5
14	STCAC	5'-CTCACT-3' 3'-gagtga-5'	0.08±0.01	35.9	94.8	6.50	8.8
15	SAGAC	5'-CAGACT-3' 3'-gtctga-5'	0.24±0.01	35.9	94.8	6.50	8.0
16	SAGCT	5'-CAGCTT-3' 3'-gtcgaa-5'	0.10±0.00	39.1	103.5	7.00	7.8
17	Scctc	5'-CCCTCT-3' 3'-gggaga-5'	0.05±0.00	33.3	83.7	7.34	9.0
18	SGGTC	5'-CGGTCT-3' 3'-gccaga-5'	0.20±0.01	39.2	100.5	8.03	8.0
19	STCGC	5'-CTCGCT-3' 3'-gagcga-5'	0.10±0.00	41.1	106.4	8.10	8.4
20	Scgct	5'-CCGCTT-3' 3'-ggcgaa-5'	0.04±0.00	42.4	109.2	8.53	8.0

Table S2: Thermodynamic parameters of the PAM+(17-20) DNA segment

21	S _{GTCG}	5'-CGTCGT-3' 3'-gcagca-5'	0.19±0.02	45.1	117.3	8.72	7.8
22	Scccc	5'-CCCCCT-3' 3'-ggggga-5'	0.02±0.00	32.9	78.5	8.55	9.0
23	Segge	5'-CGGGGGT-3' 3'-gcccca-5'	0.05±0.00	38.8	95.3	9.24	7.2
24	Scggg	5'-CCGGGT-3' 3'-ggccca-5'	0.06±0.01	38.8	95.3	9.24	7.6
25	SGCCG	5'-CGCCGT-3' 3'-gcggca-5'	0.06±0.00	46.6	118.0	10.00	7.8
26	Sccgg	5'-CGCGGT-3' 3'-gcgcca-5'	0.08±0.01	46.6	118.0	10.00	7.4

(a) TS sequence is shown on top with upper-case letters, and NTS sequence is shown at the bottom with lower-case letters. Variable sequences are indicated in red.

(b) Reported as (average \pm s.d.), with the standard-deviation (s.d.) obtained from repeated measurements.

(c) ΔH^0 and ΔS^0 values are calculated according to the nearest-neighbor model using parameters reported in ref.² Contributions of five nearest-neighbor base-pairs were included, i.e., PAM+(16-17), (17-18), (18-19), (19-20), and (20-21).

(d) $\Delta G_{NN(17-20)}^0 = \Delta H^0 - T\Delta S^0$ with T set at 310.15 K. Values reported here are used for Main Text Figure 2.

(e) Flexibility of the single-stranded NTS PAM+(17-20) segment was represented using the free energy of base stacking computed according to the nearest-neighbor model using parameters reported in ref.³

S2.2. Impacts of single-stranded DNA property at the PAM-distal NTS segment on Cas9 cleavage rate

Note that reported a Cas9 ternary structure revealed that the unwounded non-target-strand (NTS) has its PAM-distal segment squeezed out of the protein surface (e.g., pdb id:5Y36⁴). We therefore hypothesized that, in addition to DNA duplex stability beyond the RNA/DNA hybrid (Table S2, $\Delta G_{NN(17-20)}^0$), sequence-dependent flexibility at the single-stranded PAM-distal NTS segment may also influence Cas9 cleavage rate. As a first attempt, we represented the flexibility of the single-stranded NTS PAM+(17-20) segment as the free energy of base stacking computed according to the nearest-neighbor model using parameters reported in ref.³ (Table S2, $\Delta G_{nts(17-20)}^0$). For the 26 samples shown in Table S2, regression analysis gave an R_{adj}^2 value of 0.36 between ln(k_{cat}) and $\Delta G_{nts(17-20)}^0$ (Figure S3A), indicating that $\Delta G_{nts(17-20)}^0$ by itself does not strongly influence on Cas9 activity. However, analysis on a model including $\Delta G_{NN(17-20)}^0$ and $\Delta G_{nNN(17-20)}^0$ (*R*²_{adj} of 0.67, Main Text, Figure 2), indicating that the single-stranded NTS segment plays a role in modulating Cas9 activity with the 16-nucleotide guide. However, it remains unclear how well $\Delta G_{nts(17-20)}^0$ represents flexibility of the single-stranded DNA segment within the Cas9 complex. In addition, the R_{adj}^2 of 0.76 may indicate additional sequence-dependent factor(s) also play some roles in tuning Cas9 activity.

Figure S3. PAM-distal DNA NTS stacking free energy also contributes to Cas9 cleavage activity. (A) Linear regression analysis of $\ln(k_{cat})$ vs. $\Delta G^0_{nts(17-20)}$. (B). Linear regression of $\ln(k_{cat})$ vs. the sum of $\Delta G^0_{NN(17-20)}$ and $\Delta G^0_{nts(17-20)}$.

S3. Additional information on 2-amino-purine fluorescence measurements

Table S3 shows sequences of DNAs used for 2AP measurements. Table S4 lists fluorescence and absorbance data for 2AP related samples.

Name		Sequence (5' \rightarrow 3') ^(a)
	TS	GCTCAATTTTGACAGCCCA <u>CATGGCATTCCACTTCT/i2AmPr/TA</u> TGGCATCCTTCCACTC
Stata	NTS	GAGTGGAAGGATGCCA <u>TATAGAAGTGGAATGCCATG</u> TGGGCTGTCAAAATTGAGC
Sgata	TS	GCTCAATTTTGACAGCCCA <u>CATGGCATTCCACTTCG/i2AmPr/TA</u> TGGCATCCTTCCACTC
	NTS	GAGTGGAAGGATGCCA <u>TATCGAAGTGGAATGCCATG</u> TGGGCTGTCAAAATTGAGC

Table S3. Sequence	e of DNA strands ι	used for 2AP	measurements.
--------------------	--------------------	--------------	---------------

(a) PAM+(1-20) positions are underlined, and the 2AP substitution is indicated with "/i2AmPr /"

Table S4:	F370/A260	and	ratio((φ)	for 2AP	related	sample	es.
	0,0 200							

Sample		F ₃₇₀ /A ₂₆₀	Extinction coefficient	ratio(arphi) Ave ± SD ^(b)	
		Ave \pm SD (x 10 ⁶) ^(a)	(L⋅mol ⁻¹ ⋅cm ⁻¹)		
Stata -	Duplex ^(c)	2.67 ± 0.14	893,507	1.00 ± 0.05	
	ternary complex	9.25 ± 0.67	1,945,970	7.55 ± 0.55	
Saura	Duplex ^(c)	2.29 ± 0.24	895,161	1.00 ± 0.10	
GGATA	ternary complex	4.82 ± 0.56	1,947,624	4.58 ± 0.53	

(a) Average and standard deviation obtained from three repeats.

(b) Standard deviation (SD) obtained from propagation of the standard deviations (i.e., "errors") listed in the (*F*₃₇₀/*A*₂₆₀) column.

(c) Duplex sequences of S_{TATA} and S_{GATA} are shown in Table S3. The normalized quantum yields of the duplexes are different (2.67 ± 0.14 vs 2.29 ± 0.24), mainly due to 2-amino-purine having different surrounding nucleotides (T vs G at the 5' side, respectively).

S4. Dependence of activities of 16-nucleotide guides on KCI concentration

It is well known that a DNA duplex becomes more stable and harder to unwind with increasing monovalent salt concentrations, and extensive studies have established duplex free energy of formation depends on monovalent salt concentrations in a log-linear fashion, (i.e., $\Delta G_{NN}^0 \propto$ ln ([monovalent salt]).¹ If duplex stability at the PAM+(17-20) segment indeed plays a significant role in modulating the Cas9 cleavage rates (i.e., $\ln (k_{cat}) \propto \Delta G_{NN}^0$, main text, Figure 2), one would then expect a linear correlation between $\ln(k_{cat})$ and $\ln([monovalent salt])$. To test this hypothesis, k_{cat} was measured for three target substrates, S_{TATA} , S_{TCAC} , and S_{GCGG} (Table S2) at three KCI concentrations (42 mM, 100 mM, and 200 mM). As shown in Figure S4, for each substrate, k_{cat} decreases as [KCI] increases, and $\ln(k_{cat})$ correlates with $\ln([KCI])$ in a highly linear fashion, with the adjusted R^2 all being greater than 0.90. Also note that while the three substrates have rather different PAM+(17-20) stability (i.e., different $\Delta G_{NN(17-20)}^{0}$, Table S2), the slope for the corresponding $\ln (k_{cat})$ vs. $\ln([KCI])$ plots are rather similar (Figure S4), further supporting the notion that the observed k_{cat} variations arise from a common factors, i.e., saltdependent variations in DNA duplex stability. Overall, the observed KCI dependence of k_{cat} is in complete agreement with the conclusion that duplex stability at the PAM+(17-20) segment tunes the degree of DNA unwinding, subsequently modulates Cas9 cleavage rates.

Figure S4: KCI dependence of measured *k_{cat}* for three target substrates.

S5. Additional information on impact of varying sequence of the 16-nt RNA guide

Figure S5 shows that the four additional data points presented in Figure 4 of the Main Text fit nicely to the linear regression model originally obtained from analyzing the 26 S_{NNNN} sequences. The results support the notion that PAM+(17-20) positions modulate Cas9 activity independent of the 16-nt guide sequence (i.e., the PAM+(1-16) segment involving in RNA/DNA interactions).

Figure S5: Correlation between $\ln(k_{cat})$ vs. $\Delta G^0_{NN(1-17)}$) for the expanded samples. Colored dots indicate data obtained for the four additional samples shown in Figure 4 of the Main Text. Black dots show the 26 data points presented in Figure 2 of the Main Text, with the corresponding linear fit shown as the red line.

References:

- (1) SantaLucia, J., Jr. A Unified View of Polymer, Dumbbell, and Oligonucleotide DNA Nearest-Neighbor Thermodynamics. *Proc. Natl. Acad. Sci. USA* **1998**, *95* (4), 1460–1465.
- (2) SantaLucia, J., Jr.; Allawi, H. T.; Seneviratne, P. A. Improved Nearest-Neighbor Parameters for Predicting DNA Duplex Stability. *Biochemistry* **1996**, *35* (11), 3555–3562.
- (3) Pal, A.; Levy, Y. Structure, Stability and Specificity of the Binding of SsDNA and SsRNA with Proteins. *PLoS Comput. Biol.* **2019**, *15* (4), e1006768.
- (4) Huai, C.; Li, G.; Yao, R.; Zhang, Y.; Cao, M.; Kong, L.; Jia, C.; Yuan, H.; Chen, H.; Lu, D.; Huang, Q. Structural Insights into DNA Cleavage Activation of CRISPR-Cas9 System. *Nat. Commun.* **2017**, *8* (1), 1375.