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SUPPLEMENTARY METHODS 
	

Retrieval of experimentally determined structures from Protein Data Bank (PDB)  
 
To generate count statistics, we used an advanced search interface to query the PDB [1] for 
occurrences of methylated cytosine. Fig. 1a presents the numbers of structures retrieved from the 
PDB on 31 May 2017 (as a snapshot in time). Counts are expected to evolve over time as new 
structures are added to the database. Numbers can be updated by running the Python script 
QueryPDBCounts.py (available at https://doi.org/10.5281/zenodo.834334). 
 
PDB IDs of methylated DNA structures  
 
Our analysis revealed a very small subset of structures with methylated CpG dinucleotide step(s). 
PDB IDs of structures containing methylated CpG step(s) are the following: 1IG4, 1IH3, 1R3Z, 
265D, 270D, 2KY8, 2MOE, 329D, 3C2I, 3VXX, 4C63, 4F6N, 4GJP, 4GLG, 4HP1, 4LG7, 
4M9E, 4MKW, 4R2A, and 4LT5. 
 
Count statistics of transcription factor (TF) binding motifs containing CpG step(s) 
 
Counts of binding motifs containing CpG step(s) for TF families were retrieved from MotifDb 
[2], an R package comprising TFBS databases, such as HT-SELEX sequences from Jolma et al. 
[3], the expanded HT-SELEX dataset published in Yang et al. [4], or JASPAR_CORE [5], 
TRANSFAC [6], and others. 
 
Types and counts of sequences considered for Monte Carlo (MC) simulations  
 
An ensemble of sequences was selected to represent pentamers with methylated cytosine(s) in 
the CpG context. Additional file 7 (sequence_pool.xlsx) contains selected sequences/fragments 
that were considered for MC simulations. Table S1 (Additional file 2) summarizes the counts for 
different types of fragments.  
 
All-atom Monte Carlo simulations  
 
MC simulations utilize a random sampling method to probe the search space while considering 
all of the atoms. This method treats most bond angles and all bond lengths as constants, which 
results in a substantial reduction in the number of degrees of freedom [7]. Variables considered 
in the MC simulations are summarized in Table S2 (Additional file 3). MC simulations were 
performed by using an implicit solvent with sigmoidal distance-dependent dielectric function, 
explicit sodium counter ions, and associated Jacobians [8].  
 
 Total system energy was calculated by using the AMBER force field [9]. The force field 
for 5mC differed from that of the cytosine parameters due to the added methyl group. We used 
partial charges derived for 5mC from the database of AMBER force fields for naturally 
occurring modified nucleotides [10].  
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 MC simulations started from a seed structure (in this case, a canonical B-DNA structure 
of a sequence generated with standard structural parameters using JUMNA [11]) as input and ran 
for 2 million MC cycles. Trajectory snapshots were stored every tenth cycle. The first half-
million MC cycles were discarded as the equilibration period. Following equilibration, a total of 
150,000 snapshots representing 1.5 million MC cycles were stored in the trajectory file of each 
individual simulation. The trajectory analysis program traversed through all of these snapshots 
and recorded the average shape parameter values derived by CURVES [12]. The program also 
generated an average MC structure as a representation of the sequence. 
 
Pentamers of different sequence composition and methylation status  
 
Introduction of the letters “m” for 5-methylcytosine (5mC) and “g” for guanine base-paired to 
5mC resulted in a total of 1,974 pentamers. As we considered DNA shape features of a pentamer 
on the forward strand, this experimental design also covered features of its reverse complement. 
Thus, the total number of entries in our methylated Pentamer Query Table (mPQT) was half of 
the total count (987). We refer to these 987 pentamers as the unique pentamers for the methyl-
DNAshape method. Of these, 512 unique pentamers were comprised of the nucleotides A, C, G, 
and T. The remaining 475 unique pentamers contained at least one of the two newly introduced 
letters, “m” and “g”. Table S3 (Additional file 5) gives detailed representations of pentamers 
found in the mPQT.  
 
Pentamers used in scatter plot analysis 
 
To understand the influence of a single methylation event on DNA shape features, we considered 
pentamers with only a single CpG/mpg bp step (Fig. 3). With this constraint, a total of 116 (see 
below) pentamers were selected.  
 

#Pentamers of type 5′-CGNNN-3′ = 64 (covers 5′-NNNCG-3′) … (a) 
#Pentamers of type 5′-NCGNN-3′ = 64 (covers 5′-NNCGN-3′) … (b) 

 
Symmetry occurs in eq. (a) for CGNCG, only counts 2 pentamers (CGACG and CGCCG) of this 
type and redundancy occurs for the count of pentamer CGCGN resulting a total count of 122 
pentamers containing at least one CpG step:  
 

64 + 64 – 2 (symmetric) – 4 (redundant) = 122 
 

Count of pentamers containing exactly two CpG steps:  
 

#Pentamers of type 5′-CGCGN-3′ = 4 
#Pentamers of type 5′-CGNCG-3′ = 2 

 
Total pentamers containing exact one CpG step = 122 – 6 = 116 
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Illustration of shape vector calculation 
 
We illustrated graphically how the bp step feature values of inter-bp shape features were 
assigned at each nucleotide position (Additional file 4: Fig. S1). 
 
Effect of CpG methylation on minor groove width (MGW) of A-tracts 
 
A-tracts are important for protein-DNA recognition by many TF families [13]. A-tracts are runs 
of at least three As and Ts without a TpA step characterized by a narrow minor groove, which 
attracts basic amino acids due to its enhanced negative electrostatic potential [14]. In this study, 
we explored the effect of DNA methylation on the minor groove geometry of A-tracts. We 
analyzed the MGW of A-tracts measuring 3 bp or 4 bp in length, followed or preceded by a CpG 
base-pair (bp) step with methylated cytosine(s). For 3-bp A-tracts, we conducted a nonparametric 
significance test. Data and procedures to calculate P-values in this experiment are detailed 
below.  
  
 We collected data under the alternate hypothesis that CpG methylation narrows the minor 
groove at the central base pair (third position from 5′ direction) of a pentamer. For 3-bp A-tracts, 
or poly[(A/T)3], we collected the raw values used to estimate the MGW at the central bp of a 
pentamer, based on both the unmethylated Pentamer Query Table (PQT) or its methylated 
version (mPQT). We used a nonparametric Wilcoxon-test to test our hypothesis.  
Under the same hypothesis used for poly[(A/T)3], PQT lacked occurrences of raw data for 
poly[(A/T)4] with a CpG bp step at the flanks of the query pentamer. To address this issue, we 
performed additional all-atom MC simulations for the same set of unmethylated and methylated 
sequences. Paired t-test was used to perform hypothesis testing in this case.  
 
DNase I cleavage data and statistical modeling 
 
Data preprocessing 
  
We used methylation status-dependent DNase I cleavage as model system to validate our high-
throughput method methyl-DNAshape. DNase I is an endonuclease that cleaves the 
phosphodiester backbone of DNA [15,16]. In a genomic context, DNase I can be used to profile 
the accessible regions of chromatin in a process called “DNase I footprinting”. DNase-seq is a 
sequencing-based method that utilizes DNase I cleavage to identify open regions of chromatin in 
a high-throughput manner. We used DNase-seq data generated from DNase I treatment in the 
IMR90 human cell line (GEO accession number: GSM723024). Data analysis revealed a 
sequence context-dependent bias of the DNase I cleavage activity. In particular, the presence of a 
methylated CpG step immediately downstream of the cleavage site resulted in a strong bias. We 
categorized each cleaved site as high or low methylation status, depending on the degree of 
methylation of CpG step(s) in the neighboring sequence. We used DNA methylation data 
generated by whole-genome shotgun bisulfite sequencing in the same cell line (GEO Accession 
ID: GSM432687-92) to determine high or low methylation status.   
  
 Analysis of the co-crystal structure of DNase I with DNA (PDB ID: 2DNJ) [17] revealed 
that positively charged arginine residues formed contacts in the minor groove immediately 
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upstream of the cleavage site. A larger fraction of variation in cut rates was explained by the 
sequence context 3-bp up- or downstream of the cleaved site, leading to a hexamer model of 
sequence- and methylation-status-dependent DNase I cleavage, as revealed in our previous study 
[15].  
 
 Results of the genome-wide analysis of phosphodiester cleavage events were recorded in 
tabular format. Based on the methylation level of the genomic region, five tables (tier 1 to tier 5, 
from lowest to highest level of methylation; available at https://doi.org/10.5281/zenodo.834334) 
were generated. Each table contains 4,096 hexamers with multiple entries depending on the 
frequency of cleavage. For example, the first hexamer entry in the tier 1 table consists of three 
rows (Additional file 9: Table S4). Information in the table can be summarized as follows: A 
total of 5664 phosphates of type AAApAAA in the genome that were cleaved once, and 7 that 
were cleaved twice. For example, the absolute phosphate cleavage count for AAApAAA equals 
1 × 5,664 + 2 × 7 = 5,678. 
 
 Following Lazarovici et al. [15], we normalized the absolute phosphate cleavage counts 
by the total counts of a given hexamer in the genome (Additional file 10: Table S5, column 4). 
Normalized values were further divided by the maximum relative phosphate cleavage rate 
(maximum value from column 4) to keep all values in the range [0, 1] (resulting in normalized 
values in column 5). These Scaled Ratio (SR; Table S5, column 5) values refer to relative cut 
rates of the most frequently cleaved hexamer (ACTpTAG). Absence of a CpG step in 
ACTpTAG leads to an unbiased comparison of SR values of unmethylated and methylated 
hexamers containing CpG step(s). SR values were converted into relative binding free energy 
(ΔΔG) values by scaling to the negative log. The following equation represents the conversion 
process: 
  

Relative Binding Free Energy (RBFE)hexamer := ΔΔG/RThexamer = –log (SRhexamer) 
 
Statistical modeling 
 
To understand DNase I cleavage bias from a DNA shape perspective, we adopted a statistical 
modeling method, L1- and L2-regularized multiple linear regression, to refine our previously 
published shape-to-affinity model [16]. To build the predictive model, we only used 
unmethylated hexamer data, namely DNA shape features as predictors and RBFE values as 
response variables. DNA shape features of unmethylated hexamers were predicted using 
DNAshape [18]. 
  
 Predictions from DNAshape are unavailable in flanking regions (Additional file 6: Fig. 
S2). To assign values in these regions in an unbiased manner, we extended the sequence flanks 
by a general nucleotide “N” (with N ∈ {A, C, G, T}) to create a pentamer window with the bp of 
interest at the center. For the leftmost or rightmost bp, we extended the window by two Ns. For 
the second bp from either the left or right flank, we extended the window by a single N. 
DNAshape values obtained for all possible permutations of pentamers formed by N (4 for single 
N, 16 for NN) were averaged to assign a single value at each position of the flanking regions.  
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 Considering the very low count of observed cut events (Additional file 9: Table S4, 
column 2) relative to the number of available genomic positions (column 3), we concluded that 
the DNase I cleavage activity followed a Poisson process. To avoid uncertainties in counting, we 
used the following criteria: 
 

𝜎 𝑜𝑟 𝑆 ≤  0.2 × 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐶𝑜𝑢𝑛𝑡!!"#$!%  … (1) 
Where: 

σ: standard deviation, S: sampling error 
 

In a Poisson distribution, we can use standard deviation as an estimation of the sampling error. 
For a Poisson distribution: 
 

𝜎 =  𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐶𝑜𝑢𝑛𝑡!!"#$!%  … (2) 
 
Solving Eq. (1) using (2) gives us:  
 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐶𝑜𝑢𝑛𝑡!!"#$!% ≥ 25 
  
 With the above considerations, we included the 3,037 hexamers with an absolute 
phosphate cleavage count ≥ 25 in the training set for the model (see Data Preprocessing for 
details). Because the model is linear, we can infer changes in RBFE (ΔΔΔG) by using these 
counts and the methylation-induced changes in shape features (Δshape). 
 

𝛥𝛥𝐺 !"#!!"#$%& =𝑊!𝑆ℎ𝑎𝑝𝑒!"#!!"#$%& + 𝑏 
𝛥𝛥𝐺 !"#$%!!"#$%& =𝑊!𝑆ℎ𝑎𝑝𝑒!"#$%!!"#$%& + 𝑏 

𝛥𝛥𝛥𝐺 =  𝛥𝛥𝐺 !"#!!"#$%& −  𝛥𝛥𝐺 !"#$%!!"#$%& =𝑊!𝛥𝑠ℎ𝑎𝑝𝑒 
 
For modeling, we used the widely used tool glmnet with hybrid regularization (both L1- and L2-
regularization by setting alpha = 0.5). Vignettes for glmnet are available at https://cran.r-
project.org/web/packages/glmnet/vignettes/glmnet_beta.html. 
 
CpG context for unmethylated DNA 
 
Both DNAshape [18] and methyl-DNAshape (this work) are pentamer sliding-window based 
DNA shape feature prediction methods. In addition to offering the shape feature prediction, 
methyl-DNAshape offers users the ability to predict methylation-induced shape changes (Δshape; 
Fig. 2). However, simply subtracting the DNAshape feature vector from the methyl-DNAshape 
feature vector may not result in the Δshape originating solely from DNA methylation in all cases. 
For example, in the mPQT, the estimated MGW at the central A for pentamer 5′-TGATm-3′ is 
5.23 Å, calculated by averaging the MGW values of all pentamers of this type in the methylated 
sequence pool. However, this pentamer always had a “g” (guanine following the methylated 
cytosine indicated by “m”) at the sixth position flanking the pentamer on the 3’ side, due to the 
assumption of mpg dinucleotide steps in case of methylated cytosines. The unmethylated 
counterpart of this pentamer, 5′-TGATC-3′, with estimated MGW value 4.77 Å, is averaged over 
any nucleotide (N ∈ {A, C, G, T}) at the sixth position flanking the pentamer in the 
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unmethylated sequence pool. Hence, ΔMGW (5.23 Å – 4.77 Å = 0.46 Å) is confounding 
methylation and sequence effects because of the identity of the nucleotide at the sixth position.  
 
 To address this technical subtlety, we compiled an additional table, called the CpG 
context table. We illustrated the use of this table to predict the ΔMGW (Additional file 6: Fig. 
S2). Apart from existing MC simulation data used to build the PQT used in DNAshape, we ran 
additional MC simulations to enrich the count for such pentamers with the CG context in their 
flanks. With this new query table, we believe that we can look at the effect of methylation on 
shape feature values more closely (ΔMGWDNAshape = 0.46 vs. ΔMGWCpG context table = 0.22 Å). 
 
T-test for IUPAC-based shape analysis in Fig. 6 
	
Two-tailed paired t-test statistics was used to infer the significance of ΔMGW for hexamers and 
pentamers of types NNAYCG or NGAYCG and NNACG or NGACG, respectively (Fig. 6d). 
The latter hexamers or pentamers where T replaces N at the initial position, representing the 
most preferred binding site (TGAYCG, count=2; TGACG, count=1), were not included in the 
plot because of too few possible instances to perform significance tests. Nevertheless, the 
ΔMGW for TGATCG is 0.22 Å, and for TGACCG it is 0.16 Å.  
 
Validation of methyl-DNAshape using experimentally determined structures 
 
Additional filtering, such as by experimental procedure (i.e., X-ray structures) and methylation 
status (i.e., fully and not hemi-methylated CpG steps), reduced the 20 structures (PDB IDs listed 
above) with methylated CpG step(s) to a total of only 10 structures. Such a very low count is 
obviously not sufficient for a comparative analysis or validation, especially given other 
influences such as crystal-packing artifacts. Nevertheless, we visualized the MGW profiles of 
some of these structures (Additional file 8: Fig. S3), and this limited comparison indicated 
agreement between the X-ray crystallography and methyl-DNAshape results. The limited 
experimental data do not provide validation, but rather emphasize the need for a computational 
method to fill the current gap in structural information on methylated DNA.  
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Table S1. Types of DNA fragments and their counts. Summary of types of sequences 
considered for all-atom Monte Carlo (MC) simulations. Most sequences were designed to 
cover different flanking sequences. Sequences between “-” symbols in column 1 are “core 
sequences”. Other sequences are regarded as flanks. “N” in designed sequences represents 
general DNA alphabet letters {A, C, G, T}. Methylated cytosine (“m”) and subsequent 
guanine (“g”) bases are underlined.   

 
Fragments Number of MC simulations Selected from 

Human HOXA9 binding sequences 3 [1] 

Human HOXA5 binding sequences 84 [1] 

CGNN-5mer-NNCG 1054 Designed 

CGNN-NNNNmg-NNCG 1298 Designed 

CGCG-NNmgNN-CGCG 253 Designed 

CGCG-NNNmgN-CGCG 256 Designed 

CGNN-mgNNNmg-NNCG 496 Designed 

CGNN-poly[A/T]4mg-NNCG 74 Designed 

Total 3518  
	

[1] Hu S, Wan J, Su Y, Song Q, Zeng Y, Nguyen HN, et al. DNA methylation presents 
distinct binding sites for human transcription factors. eLife 2013;2:e00726.  

	



	

Table S2. Variables considered in MC simulations. 
 
Type of variable Count Description 

Collective 6 3 rigid-body rotations, 3 rigid-body translations of 
nucleotides 

Internal 6 (7 for T or m) 
Glycosidic torsion angle, two endocyclic torsion and 
one bond angle, sugar phase and amplitude 
(methyl group rotation for T or m) 

	

	

	



	

	

 

 

Fig. S1. Shape vector calculation. a Two Roll values, Roll1 and Roll2, were assigned to a given 
pentamer by using the query table for bp steps 2-3 and 3-4, respectively (illustrated at the top). 
The PQT lookup procedure is explained for calculation of the Roll feature vector for DNA 
sequence 5′-TTTGACT-3′ as an example. Retrieval of the Roll feature vector for this sequence 
queries the lookup table three times for listed pentamers in the table. Because the third query 
pentamer, 5′-TGACT-3′, finds its reverse complement 5′-AGTCA-3′ in the table, the search 
resulted in the reversal of Roll1 and Roll2 values of 5′-AGTCA-3′. The same process was 
adopted for the base-pair step feature HelT. b Illustration of MGW feature vector calculation. 
The process is simplified in this case because the search returns a single value at the central bp 
for a given pentamer. MGW values for two flanking nucleotides are undefined because values at 
these positions cannot be calculated as per definition of minor groove.  
 
< . >: average; σ: standard deviation. 
	



	

Table S3. Count breakdown of unique pentamer entries in methyl-DNAshape Pentamer 
Query Table (mPQT). 
 

  

Regular DNA 
alphabet  

∑ = {A, C, G, T} 

DNA alphabet with two additional letters 
 ∑ = {A, C, G, T, m, g} 

m: 5mC; g: G base-paired to 5mC 

Strand  
orientation 5-mers Count 5-mers 

containing “mg” Count 
5-mers beginning 

with “g” or ending 
with “m”  

Count 

Forward 

NNANN 256 mgNNN 64 NNNNm 256 
NNCNN 256 NmgNN 64 mgNNm 16 

    

mgmgN 4 NmgNm 16 
*mgNmg 4 NNmgm 16 

  

mgmgm 1 
*gNNNm 64 
gmgNm 4 

Reverse 

NNTNN 256 NNNmg 64 gNNNN 256 
NNGNN 256 NNmgN 64 gNNmg 16 

    

Nmgmg 4 gNmgN 16 

  

gmgNN 16 
gmgmg 1 
gNmgm 4 

Total  
 
1024 

  
268 

  
682 

Strand-specific total 512 134 341 

Total count of pentamers used in the query table = 512 + 134 + 341 = 987 

*Only counted in forward strand 
	

	



 

 

 

Fig. S2. Use of CpG context table in ΔMGW prediction. Example query sequence, 5′-
GTGATmgATCmg-3′, used to illustrate ΔMGW prediction. Querying ‘TGATm’ 
(GTGATmgATCmg) to methyl-DNAshape gives MGW = 5.23 Å. Retrieving the value (5.01 Å) 
for its unmethylated version ‘TGATC’ (left magenta dotted rectangle) would require a lookup in 
the CpG context table. Similarly, the unmethylated version of pentamer ‘gATCm’ (GATCC; 
right magenta dotted rectangle) would require CpG contexts at both flanks. With compilation of 
the CpG context table, these specific cases can be taken into account.	



 
Fig. S3. MGW profiles for selected DNA fragments or protein-DNA complexes  

a-d MGWs for DNA sequences (x-axis labels) of four structures (X-ray based; PDB IDs - 4LG7, 
3C2I, 4M9E, and 265D) were predicted with methyl-DNAshape (blue points; this work) or 
calculated with CURVES (orange points; [1]). Underlined subsequence is expanded in every 
plot, presenting point-to-point correspondence between methyl-DNAshape predictions and 
CURVES-derived values of MGW. Pearson correlation coefficients (PCCs) between methyl-
DNAshape and X-ray–based values and their corresponding P-values are included in each panel. 
Panels are shown in the order of significance (P-value). 

[1] Lavery R, & Sklenar H. Defining the structure of irregular nucleic acids: conventions and 
principles. J. Biomol. Struct. Dyn. 1989;6:655–67.  



	

Table S4. Data preprocessing of DNase I cleavage data. 
Entry of hexamer AAApAAA in tier1 table. Every table 
contains one or multiple entries of each hexamer. 
 
 

Hexamer Frequency Count 

AAApAAA 0 13037815 

AAApAAA 1 5664 

AAApAAA 2 7 

	

	

	



	

	

	

[2] Lazarovici A, Zhou T, Shafer A, Dantas Machado AC, Riley TR, Sandstrom R, et al. 
Probing DNA shape and methylation state on a genomic scale with DNase I. Proc. Natl. Acad. 
Sci. USA. 2013;110:6376–81. 

	

	

Table S5. DNase I cleavage data in hexamer context. Observed Cuts (column 2) are counts 
of hexamers centered at cleaved phosphates (represented by “p”). Total number of mappable 
genomic positions for those hexamers is mentioned in column 3. 

 
Hexamer Observed Cuts Genomic Positions Ratio Scaled Ratio 
ACTpTAG 90,964 1,092,889 0.08323 1 

ACTpTGT 99,223 1,284,748 0.07723 0.92790 

ACTpTGG 91,281 1,360,831 0.06708 0.80590 

ACTpTAA 119,341 1,840,040 0.06486 0.77924 

TCTpTAG 85,512 1,335,788 0.06402 0.76912 

... ... ... ... ... 

CGGpTTT 10 201,805 0.00005 0.00060 

CGCpGCG 3 81,371 0.00004 0.00044 

GACpGCG 0 49,356 0 0 

*Adapted from [2]. 


