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SUPPLEMENTARY ANALYSIS 
 
Comparing the reproducibility of PBM and SELEX-seq data 
 
Whereas PBM experiments have been instrumental in revealing the binding preferences for hundreds 
of TFs in a high-throughput manner (1,2), the typical experiment is designed to examine binding sites 
up to 8-bp in length. Although the Seed-and-Wobble approach was proposed to extend the binding 
site beyond 8-bp (1), motifs generated by the approach were found to greatly underperform relative to 
BEEML-PBM, putting its broad applicability into question (3). While fluorescence intensity and binding 
strength are correlated in uPBM data, unrelated factors may also affect fluorescence, such as the 
binding site location and orientation within the 60-bp probes. In a typical PBM experiment, each 8-mer 
occurs in at least 32 positions on the chip, so the effects from these secondary factors are thought to 
be minimal relative to the effects of binding strength (1). However, for moderate-to-low affinity 
sequences, these effects can lead to noisy or irreproducible measurements across different 
microarray designs (Supplementary Figure S3A). This also complicates the detection of small-scale 
preferences that may be found in the positions flanking the core. Our SELEX-seq experiment is able 
to address many of the discussed concerns simply due to the extreme depth of sequencing utilized. 
We ultimately collected around 35 million reads per sample for Fkh1 and Fkh2, and about 10 million 
reads per sample for Hcm1 and Fhl1. 
  

Previously, Bulyk and co-workers derived binding profiles for 89 yeast TFs, including Fkh1, 
Fkh2, and Fhl1 using PBM experiments (4). For each TF, replicate experiments were performed 
using two separate microarrays designed with independent de Bruijn sequences. In comparing the Z-
score normalized PBM enrichments between the two microarray designs probed with Fkh1, we 
detected weak correlations for the majority of 8-mers measured (Supplementary Figure S3A). This 
was especially apparent for 8-mers exhibiting low signal intensities. In comparing Fkh1 and Fkh2 
intensities measured using the same microarray design, a stronger correlation was observed. This 
suggests that any differences in binding between Fkh1 and Fkh2 are more subtle than the variance 
that is observed across different microarray designs. For this reason, it is clear that a uPBM study of 
this design is not suitable for revealing the subtle differences in binding preferences between the two 
homologs. Alternatively, our SELEX-seq experiment produced reproducible enrichment 
measurements for Fkh1 across varying library designs while successfully revealing a greater degree 
of variance between Fkh1 and Fkh2 evaluated on the same library design (Supplementary Figure 
S3B). The specific differences are explored in detail using our core-based alignment framework as 
discussed in the main text. 
 
Evaluating the sensitivity of our framework to the stopping rule 
 
We determined our list of cores using a 95% stopping rule described in Materials and Methods. 
However, we wanted to evaluate how stable our observations would be given an extended set of core 
sequences. As an extreme case, we decided to realign our Fkh1 reads using our curated list of 49 
cores plus all additional sequences from the list of the top 500 prioritized cores, ignoring our 
previously defined stopping rule. This allowed us to align 28.4% of the R1 data, and only 33.1% of the 
R2 data, likely due to overfiltering as a result of many reads containing multiple ‘cores’. We found 
−ΔΔG/RT measurements to be highly correlated with those collected when alignment was performed 
using only our curated list of 49 cores, with Pearson r2 equal to 0.99 for core measurements, and 0.90 
for flanking measurements (Supplementary Figure S6A). Looking at the flanking preferences of the 
additional cores alone, we find a drastic drop-off in flanking contributions when sorting by core 
enrichment, suggesting that many of the less-enriched cores are not faithfully identifying true binding 
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sites (Supplementary Figure S6B). Therefore, while it may be possible to increase the number of 
cores analyzed using a less stringent stopping rule, it would also increase our false-positive rate. 
 
Quantifying the interdependencies of flanking positions using MLR 
 
One assumption in our calculation of flanking position contributions was that they contribute 
independently of each other to binding. To probe the validity of this assumption, we used Multiple 
Linear Regression (MLR) to model and predict ΔΔG/RT for long k-mers that cover multiple flanking 
positions. Since individual k-mer counts are larger for shorter sequences, their associated ΔΔG/RT 
measurements are less noisy. However, longer k-mers can be more informative regarding 
interdependencies between nucleotide positions. Using the set of core-aligned reads, the ΔΔG/RT 
can be calculated for extended core sequences by including additional positions flanking the core. We 
included at most six flanking positions covering four bp 5’ and two bp 3’ of the core, covering up to 13 
bp in total. Instead of using a 100-count threshold for this length sequence, we filtered out sequences 
that do not appear in at least two independent alignment windows, allowing for the analysis or more 
sequences without compromising the correlation of ΔΔG/RT measured between subsets of the data. 
For each model, sequences were encoded to capture differing levels of information about 
interdependencies. 

 
For the simplest encoding, flanking positions were encoded independently of each other and 

independently of the core using a one-of-four encoding, representing the four bases of DNA. For a 
flanking sequence of length L, the full encoding includes 4 x L features. These features are referred to 
as “Flank Mononucleotides”. Since the core was restricted to a relatively small list of predefined 
sequences, the core was encoded using a one-of-C encoding, with C representing the number of 
cores included during the alignment. This feature is later referred to as “Core Identity”. This allowed 
us to avoid the assumption that core positions contribute independently to binding.  

 
Alternatively, flanking positions can be encoded in a core-dependent manner by matrix 

multiplication of the 4 x L flanking features by the one-of-C feature, resulting in a 4 x L x C set of 
features for each k-mer, referred to as “Core-Dependent Mononucleotides”. These features most 
closely represent the flanking contributions captured by our core-based alignment framework. The 
model can also be extended to include interdependencies between flanking positions by encoding all 
pairwise dinucleotides. This is done by matrix multiplication of the 4 x L flanking features by itself to 
produce a 16 * L2 set of features for each k-mer. Since this matrix is symmetric, only the upper 
triangle was kept for modeling. These features are believed to capture stacking interactions between 
bp, as well as long-range interactions between distant positions. We refer to these features as “Flank 
Dinucleotides”. Models were evaluated using a nested 5-fold cross validation strategy with 
performance reported as the mean coefficient of determination, R2. For each of the 5 training sets, 
hyperparameters were tuned using the LassoCV function from the sklearn python package with the 
maximum number of iterations set to one million, and all other settings unchanged from their default 
configuration (5).  
 

Here, we used Fkh1 as an example since it exhibited the largest feature contributions of 
flanking positions. Additionally, we only utilized the round 2 data since a very small set of 13-mers are 
significantly enriched after 1 round of selection. As described previously, measurements of 13-mer 
enrichment are inherently noisy relative to shorter k-mers. If we split our dataset into two equal parts 
of randomly sampled sequences, ensuring that duplicate reads are in the same set, we can compare 
the –ΔΔG/RT measurements between the two to get a sense of how much of the variance is due to 
noise. We find the measurements moderately well correlated with a Pearson r2 of 0.89. This puts an 
approximate upper bound on the performance of the model since it is not designed to explain noise.  
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This simplest model, including Core Identity and Flank Mononucleotide features, achieved an 
average cross-fold R2 of 0.70 (Supplementary Figure S17A). Adding Flank Dinucleotides, we 
obtained an improved R2 of 0.75. This suggests that flanking positions can interact, but these 
interactions only explain a small fraction of the overall variance. If we instead included Core-
Dependent Mononucleotides, the model achieved an R2 of 0.83. This improvement in performance 
confirms our previous observation that different cores slightly modulate flanking position contributions. 
Altogether, this indicates that flanking positions are dependent on the core as well as other flanking 
positions. With this in mind, we concluded that the best model would consider both types of 
interdependencies. Indeed, this model achieved the highest performance with an R2 of 0.90, roughly 
matching the limit of the model approximated previously based on the noisiness of the data. 

  
 If we assume the 5’ flanking positions contribute independently of the 3’ flanking positions, we 
can repeat the above tests using less noisy 11-mer sequences including the four 5’ flanking positions 
and the core. Between the same two equally sized halves mentioned previously, we observe an r2 of 
0.98. The simplest model achieved an R2 of 0.89 (Supplementary Figure S17B). The model including 
dinucleotide interactions between flanking positions achieved an R2 of 0.91. The model including 
core-dependent flanks achieved an R2 of 0.93. Lastly, the model including dinucleotide interactions 
and core-dependent flanks achieved an R2 of 0.96. As seen before, the best model included both 
types of interdependencies. Although both types of flanking interdependencies were beneficial to 
modeling, leaving them out did not severely diminish the power of the model. In the main text, we 
explore how local DNA shape features, which result from interdependencies between positions, may 
explain these preferences. 
 
Evaluation of flanking preferences determined using a deep neural network 
 
One of the main goals of our alignment-based framework is to increase the interpretability of our 
findings. If we were to unintentionally include a false core, which fails to align true binding sites, that 
would be apparent by the presence of atypical flanking preferences. Therefore, our framework can 
both identify and validate cores that are used for alignment. Furthermore, assigning reads to 
independent windows allows for greater confidence in observed flanking preferences since even 
small-scale differences can be considered significant if they are repeated across many windows.  
 

Although deep learning models can accurately reproduce k-mer level enrichments, model 
parameters are highly complex and cannot be assigned meaningful confidence intervals. Additionally, 
deep learning models are not inherently informative of binding site positioning along a given k-mer, 
making them unsuitable for understanding position-specific interactions between the DNA and 
protein. One way to get around this limitation is to use predictions of the deep learning model to build 
a simpler model. For example, a PSAM can be generated by predicting the ΔΔG/RT of all sequences 
which are one mutation away from a given reference. Although this representation is easier to 
interpret, it once again suffers from the inability to account for interdependencies between positions. 
 

Additionally, while we restrict our analysis to sequences containing one binding site, this is not 
the case for deep learning models. This makes it impossible to differentiate whether bases at flanking 
positions act to modulate the affinity of a given core, or act to create additional cores. To demonstrate 
this point, we modulated the BET-seq framework to investigate flanking preferences for our previously 
defined set of 7-bp cores (6,7). The goal of a BET-seq experiment is similar to a SELEX-seq 
experiment, except that a fixed ‘core’ is embedded within the randomized region of the library, 
allowing the user to specifically investigate flanking preferences for a given binding site. While this 
framework is designed to center binding on the given core, it does not prohibit the creation of 
additional cores outside the one that is given. Additionally, this framework requires the user to specify 
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a previously known ‘core’ which limits the discovery of novel cores which we demonstrate with our 
analysis. 

 
To summarize flanking preferences, the BET-seq framework employs a deep neural network to 

generate high-resolution estimates of binding energy for every unique sequence covering five bp 
upstream and downstream of the core. They then use these estimates to train a linear model based 
on 1-mer sequence features as input and use the feature weights to generate an interpretable energy 
logo. Adapting this framework, we first calculate the −ΔΔG/RT of all 13-mers which occur within our 
selected R2 reads, based on the original SELEX-seq protocol (8,9). Although these measurements 
are noisy on their own, we found that removing the 100-count threshold greatly improved coverage of 
moderate-to-low affinity cores, resulting in improved modeling outcomes. Next, we randomly split the 
data into a 30% testing set and a 70% training set which we used to train a model using the 
DeepBind framework (10,11) (Supplementary Figure S22). We then used this model to predict high-
resolution estimates of −ΔΔG/RT for all 13-mers covering four positions 5’ and two positions 3’ of 
each of our 7-bp cores. This model achieved an R2 of 0.85 on both the training and testing datasets.  

 
For each core, Flank Mononucleotides are fed into an MLR model using Lasso regularization 

to predict the −ΔΔG/RT values provided by DeepBind. Model parameters were then used to 
represent flanking preferences in a grid-like format as was used for our alignment-based 
measurements. At each flanking position, the average feature weight is subtracted from the specific 
contribution of each bp in order to center the data. Looking down the list of flanking preferences 
predicted by MLR, sorted by the −ΔΔG/RT values of the core, we find that the magnitude of the 
flanking preferences decreases relative to the affinity of the core (Supplementary Figure S23A). 
Without our filtering framework, low affinity cores co-occur with stronger alternate cores. Therefore, 
they would not truly indicate the most likely binding site, and flanking positions would not be 
informative how binding to that core would be modulated. This results in the ‘dilution’ of signal, 
especially for low-affinity cores. 
 

Additionally, we find that while MLR-based preferences exhibit similar patterns of specificity, 
there appears to be more noise across differing cores. Looking at energy logos plotted using the 
centered model parameters, we indeed find a preference for flanking positions which create high-
affinity cores, rather than modify the affinity of the core of interest (Supplementary Figure S23B). For 
example, looking at the cores AAATACA and CAATACA, we see an elevated preference for ‘GT’ at 
the two positions 5’ of the core. Including these two bases creates the cores GTAAATA, our fourth 
strongest core, and GTCAATA, our thirteenth strongest core. The same is not observed for our 
alignment-based measurements because we eliminate reads which contain multiple cores. 
Altogether, this suggests that our method was both more sensitive and more accurate in revealing 
how flanking positions modulate the affinity for a wide number of cores.  
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SUPPLEMENTARY TABLES AND FIGURES 
 
 

Oligo Name Sequence 

Library GAGTTCTACAGTCCGACGATCCAGNNNNNNNNNNNNNNNNTCCGTATCGCTCCTCCAATG 

+ control Fkh1/Fkh2 GAGTTCTACAGTCCGACGATCCAGAAAAGGTAAACAAGAATCCGTATCGCTCCTCCAATG 

+ control Hcm1 GAGTTCTACAGTCCGACGATCCAGGCGAAATAAACAAAACTCCGTATCGCTCCTCCAATG 

+ control Fhl1 GAGTTCTACAGTCCGACGATCCAGAACCGACGCAAACAAATCCGTATCGCTCCTCCAATG 

− control GAGTTCTACAGTCCGACGATCCAGAGAGTTAGCCGATGTTTCCGTATCGCTCCTCCAATG 

Forward Primer GAGTTCTACAGTCCGACGATC 

Reverse Primer CATTGGAGGAGCGATACG 

5’ adapter AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA 

3’ adapter – R0 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCACGTGATCATTGGAGGAGCGATAC 

3’ adapter – R1 Fkh1 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCAACATCGCATTGGAGGAGCGATAC 

3’ adapter – R1 Fkh2 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCAGCCTAACATTGGAGGAGCGATAC 

3’ adapter – R2 Fkh1 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCACACTGTCATTGGAGGAGCGATAC 

3’ adapter – R2 Fkh2 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCAATTGGCCATTGGAGGAGCGATAC 

3’ adapter – R1 Hcm1 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCAATTGGCCATTGGAGGAGCGATAC 

3’ adapter – R1 Fhl1 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCAACATCGCATTGGAGGAGCGATAC 

3’ adapter – R2 Hcm1 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCAGATCTGCATTGGAGGAGCGATAC 

3’ adapter – R2 Fhl1 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCCTTGGCACCCGAGAATTCCAGCCTAACATTGGAGGAGCGATAC 

GACAACA – CB GCTCAATTGACAACATATCGG 

GAAAACA – CB GCTCAATTGAAAACATATCGG 

GTAAACA – CB GCTCAATTGTAAACATATCGG 

StrongFlank – CB GCTCAATTGTCAACATATCGG 

WeakFlank – CB GCTCGGCGGTCAACAGGTCGG 

 |        |         |         |         |         |         |         |         |         

 1        10        20        30        40        50        60        70        80 

 
Supplementary Table S1. Oligo sequences used for SELEX-seq and competitive binding (CB) 
experiments. The 16-bp variable region of the library is bolded. Positive and negative controls were 
used to determine the appropriate protein:DNA ratio to minimize non-specific binding, as described in 
Materials and Methods. Forward and reverse primers were used in the amplification of the library. 
Illumina adapters and barcodes were added to the final library products using four cycles of PCR with 
the 5’ and 3’ adapter oligos shown above. The flanking positions that were modulated for the 
competitive binding experiment are underlined.  
 
 

Protein Library Volume 

Fkh1 1488 fmol 5818 fmol 30 μL 

Fkh2 1477 fmol 5818 fmol 30 μL 

Hcm1 6000 fmol 6000 fmol 30 μL 

Fhl1 3000 fmol 6000 fmol 30 μL 

 
Supplementary Table S2. Table of molar amounts used for all SELEX-seq experiments pertaining to 
each homolog.  
 
 

Protein Probe Competitor Volume 

Fkh1 2400 fmol GACAACA - CB 600 fmol GAAAACA - CB 0 - 4800 fmol 15 μL 

Fkh1 2400 fmol GAAAACA - CB 600 fmol GACAACA - CB 0 - 2400 fmol 15 μL 

Fkh1 1800 fmol GTAAACA - CB 600 fmol GAAAACA - CB 0 - 9600 fmol 15 μL 

Fkh2 2400 fmol GTAAACA - CB 600 fmol GAAAACA - CB 0 - 9600 fmol 15 μL 

Fkh1 1440 fmol StrongFlank - CB 600 fmol WeakFlank - CB 0 - 38400 fmol 15 μL 

 
Supplementary Table S3. Table of molar amounts used for all competitive binding experiments. The 
amount of competitor varies, with molar ratios relative to the probe shown on the corresponding gel.  
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Core Fkh1 Fkh2 Hcm1 Fhl1 
GTAAACA 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 1.209 (0.105) 
ATAAACA 0.536 (0.061) 0.524 (0.057) 0.191 (0.060) 1.266 (0.058) 
GTCAACA 0.673 (0.060) 0.557 (0.070) 0.284 (0.064) 1.167 (0.076) 
GTAAATA 0.835 (0.106) 0.550 (0.102) 1.205 (0.076) 1.456 (0.114) 
ATCAACA 1.011 (0.065) 0.949 (0.072) 0.090 (0.058) 1.205 (0.057) 
GTACACA 1.325 (0.072) 1.399 (0.103) 0.644 (0.076) 0.861 (0.061) 
GACAACA 1.363 (0.080) 0.911 (0.083) 0.709 (0.062) 1.164 (0.078) 
CACAACA 1.481 (0.059) 0.797 (0.066) 0.458 (0.084) 0.842 (0.080) 
CAAAACA 1.483 (0.109) 0.790 (0.064) 0.783 (0.057) 1.166 (0.087) 
CTAAACA 1.546 (0.123) 1.467 (0.091) 1.218 (0.085) 1.218 (0.078) 
ATAAATA 1.548 (0.103) 1.298 (0.108) 1.610 (0.090) 1.441 (0.103) 
AACAACA 1.610 (0.082) 0.934 (0.081) 0.235 (0.072) 1.129 (0.078) 
GTCAATA 1.631 (0.074) 1.162 (0.114) 1.420 (0.064) 1.320 (0.096) 
ACAAACA 1.692 (0.088) 1.299 (0.065) 0.761 (0.100) 0.976 (0.090) 
ATACACA 1.862 (0.077) 1.793 (0.088) 0.707 (0.089) 0.904 (0.077) 
ATATACA 1.881 (0.086) 1.764 (0.103) 1.314 (0.074) 1.176 (0.075) 
GAAAACA 1.899 (0.096) 1.237 (0.082) 1.062 (0.071) 1.327 (0.134) 
AATAACA 1.901 (0.068) 0.928 (0.070) 0.773 (0.077) 1.261 (0.068) 
CCAAACA 1.926 (0.074) 1.349 (0.062) 0.958 (0.089) 0.862 (0.092) 
CATAACA 1.938 (0.137) 1.072 (0.075) 0.871 (0.088) 1.037 (0.102) 
AAAAACA 2.019 (0.104) 1.378 (0.067) 0.902 (0.078) 1.348 (0.121) 
ATCAATA 2.028 (0.103) 1.699 (0.105) 1.335 (0.093) 1.338 (0.064) 
GCAAACA 2.040 (0.066) 1.468 (0.083) 1.173 (0.074) 0.789 (0.075) 
TACAACA 2.221 (0.105) 1.630 (0.103) 1.472 (0.070) 1.074 (0.077) 
AGCAACA 2.285 (0.084) 1.966 (0.079) 1.114 (0.075) 0.842 (0.052) 
CAAAATA 2.325 (0.126) 1.580 (0.104) 2.068 (0.094) 1.328 (0.073) 
GGCAACA 2.426 (0.084) 1.975 (0.111) 1.635 (0.051) 1.075 (0.065) 
AATAATA 2.440 (0.199) 1.511 (0.089) 2.071 (0.093) 1.436 (0.084) 
CAATACA 2.475 (0.116) 2.014 (0.123) 1.453 (0.074) 1.065 (0.094) 
GACAATA 2.475 (0.158) 1.952 (0.092) 2.190 (0.073) 1.327 (0.113) 
GATAACA 2.482 (0.101) 1.484 (0.120) 1.448 (0.077) 1.196 (0.082) 
ACCAACA 2.493 (0.093) 1.949 (0.087) 1.572 (0.069) 1.094 (0.104) 
CACAATA 2.523 (0.180) 1.863 (0.098) 1.766 (0.055) 0.960 (0.079) 
AAATACA 2.534 (0.242) 2.118 (0.183) 1.367 (0.101) 1.325 (0.118) 
AGAAACA 2.577 (0.067) 2.432 (0.087) 1.516 (0.085) 1.291 (0.145) 
GACGCA- 2.599 (0.129) 3.164 (0.132) 2.174 (0.114) 0.000 (0.000) 
CATAATA 2.628 (0.124) 1.632 (0.107) 1.973 (0.081) 1.210 (0.095) 
GAATACA 2.739 (0.103) 2.284 (0.091) 1.515 (0.098) 1.235 (0.070) 
GTCGCA- 2.914 (0.192) 3.317 (0.172) 2.581 (0.104) 0.294 (0.051) 
CATCACA 2.966 (0.199) 2.365 (0.102) 1.563 (0.084) 0.910 (0.075) 
CACGCA- 3.048 (0.196) 3.168 (0.177) 2.272 (0.134) 0.070 (0.040) 
AACGCA- 3.083 (0.234) 3.140 (0.238) 2.377 (0.108) 0.209 (0.044) 
GACGCT- 3.209 (0.193) 3.383 (0.182) 2.904 (0.151) 0.385 (0.049) 
TACGCA- 3.224 (0.307) 3.218 (0.191) 2.566 (0.130) 0.386 (0.062) 
CGCGCA- 3.229 (0.161) 3.520 (0.148) 2.640 (0.153) 0.271 (0.050) 
GACGCG- 3.233 (0.152) 3.444 (0.107) 2.738 (0.121) 0.194 (0.054) 
GGCGCA- 3.406 (0.158) 3.565 (0.149) 2.694 (0.133) 0.360 (0.058) 
GACTCA- 3.676 (0.310) 3.536 (0.178) 2.978 (0.164) 0.239 (0.046) 

 
Supplementary Table S4. ΔΔG/RT measurements for our selected core sequences averaged over 
every window, with standard deviations shown in parentheses.  
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Supplementary Figure S1. Binding logos derived from ChIP-seq, HT-SELEX, and PBM experiments 
performed on FOX homologs found in (A) human or (B) S. cerevisiae. Data was downloaded from 
JASPAR (12) and UniPROBE (13) and then visualized using ggseqlogo. 
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Supplementary Figure S2. Co-crystal structure of FOX protein bound to a fragment of DNA (14), 
with contact maps generated using DNAproDB (15,16). Teal half-circles represent major groove 
contacts, whereas purple half-circles represent minor groove contacts. Red circles indicate residues 
along the main recognition helix of FOXK2, while blue squares represent residues present within the 
winged regions. (A) Shows FOXK2 contacting a canonical GTAAACA binding site. In this structure, 
the wings were able to be resolved, revealing minor groove contacts outside of the core. (B) Shows 
FOXN3 contacting the sub-optimal Fhl motif, GACGCA. Many contacts in the core are maintained 
despite a drastically differing sequence.   
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Supplementary Figure S3. (A) Comparison of Z-score normalized enrichment scores for 8-mer 
sequences according to two independent PBM microarray designs performed on Fkh1 and Fkh2. (13) 
(B) Comparison of Z-score normalized enrichment scores for 9-mer sequences derived from two 
separate SELEX-seq experiments with different library designs performed on Fkh1. Fkh2 was only 
evaluated using the second library design.  
 
 
 

 
 
Supplementary Figure S4. SDS-PAGE gels of our purified constructs indicating the amount of 
construct loaded in each lane.    
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Supplementary Figure S5. Plots showing the relative enrichment of the top 250 candidate cores 
determined by Top-Down-Crawl (TDC) as described in Materials and Methods, showing that a small 
subset of cores are significantly more enriched than the majority.  
 
 

 
 
Supplementary Figure S6. (A) Comparison of core and flanking −ΔΔG/RT measurements when 
reads are aligned using our selected set of 49 cores, or aligned with the same set in addition to a list 
of the top 500 prioritized cores. (B) Average flanking contributions measured across the top 500 
prioritized cores, showing a diminishing signal as false cores are more likely to be included.  
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Supplementary Figure S7. Shows the relationship between the number of cores we included during 
alignment versus the fraction of reads that align to a single core. The list of candidate core sequences 
was sorted by raw enrichment or by iterative reprioritization as described in the manuscript. Using the 
top k-mers from the reprioritized lists allows for more sequences to be included in downstream 
analysis.  
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Supplementary Figure S8. (A) Distribution of the four bp at various positions along the 16-mer in the 
initial library. (B) Scatter plots comparing the relative frequencies of 7-mers occurring at different 
shifts. This figure exemplifies the need for a position-specific background model when determining 
enrichment. 
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Supplementary Figure S9. BEESEM (17) motifs derived using either a seed of GTAAACA or 
AAAAGTAAACAAA, covering four positions 5’ of the core and two positions 3’ of the core. These 
motifs are used to predict the enrichment of cores, or flanking bp surrounding the core in ChIP-exo 
peaks.  
 
 

 

  
 

Supplementary Figure S10. Comparison of the Z-score normalized enrichment of various length k-
mers derived from two equally sized sets of unique reads from Round 2 of the Fkh1 SELEX-seq 
experiment. The coverage represents the proportion of unique k-mers for which we could calculate 
the enrichment.  
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Supplementary Figure S11. PWMs generated from our selected 7-bp or 6-bp cores, weighting each 
sequence by its relative enrichment. We would like to reiterate that these are generated for 
comparison only, and we do not support the use of such PWMs in this case to broadly represent 
binding preferences. 
 
 

 
Supplementary Figure S12. Bar plots showing how reads are distributed across independent 
windows after alignment to our set of cores. The distribution changes more dramatically for homologs 
which are more sensitive to flanking positions.  
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Supplementary Figure S13. Heatmap comparing the measured –ΔΔG/RT of 7-bp cores that are at 
least two mutations away from the reference, GTAAACA, to those values predicted by adding the 
−ΔΔG/RT measurements of cores that are one mutation away from the reference.  
 
 

 
 
Supplementary Figure S14. Scatter plot comparing the measured –ΔΔG/RT of 7-bp cores that are 
at least two mutations away from the reference, GTAAACA, to those values predicted using a PSAM 
generated from the table of 7-mer enrichments from Fkh1 R2, as overlayed on the plot. PSAM-based 
predictions are consistently lower than our observed measurements.  
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Supplementary Figure S15. Comparison of –ΔΔG/RT of 7-bp core sequences between (A) Fkh1 
and Fkh2 or (B) Hcm1 and Fkh2 color-coded by bp identity at each position, with lines representing 
the base-specific least-squares fit at positions of interest, revealing differing base preferences 
between FOX homologs. 
 
 

 
 
Supplementary Figure S16. Competitive binding assays, with conditions detailed in Supplementary 
Table S3. In each case, the probe is FAM-labeled, and the competitor is unlabeled. The molar ratio of 
competitor to probe is shown. (A) Experiments comparing the cores GAAAACA and GACAACA (B) 
Experiments comparing Fkh1 and Fkh2 binding to the cores GTAAACA and GAAAACA. (C) 
Experiment comparing a fixed core surrounded by optimal or suboptimal flanking sequences.  
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Supplementary Figure S17. Bar plots showing the performance of MLR models designed to 
interrogate the importance of interdependencies across flanking positions. Models were trained to 
predict (A) 13-mers covering four bp 5’ of the core and two bp 3’ of the core, or (B) 11-mers covering 
the four bp 5’ and zero bp 3’ of the core. Model features are described in Materials and Methods. 
 
 
 

 
 
Supplementary Figure S18. ΔΔG/RT measurements for each aligned core averaged over the 40 
independent sets of aligned reads from the Fkh1 SELEX-seq experiments. Rows are clustered with  
the UPGMA algorithm using Manhattan distance as the metric.  
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Supplementary Figure S19. ΔΔG/RT measurements for each aligned core averaged over the 40 
independent sets of aligned reads from the Fkh2 SELEX-seq experiments. Rows are clustered with 
the UPGMA algorithm using Manhattan distance as the metric.  
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Supplementary Figure S20. ΔΔG/RT measurements for each aligned core averaged over the 40 
independent sets of aligned reads from the Hcm1 SELEX-seq experiments. Rows are clustered with 
the UPGMA algorithm using Manhattan distance as the metric.  
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Supplementary Figure S21. ΔΔG/RT measurements for each aligned core averaged over the 40 
independent sets of aligned reads from the Fhl1 SELEX-seq experiments. Rows are clustered with 
the UPGMA algorithm using Manhattan distance as the metric.  
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Supplementary Figure S22. Deep learning model architecture, employing reverse-complement 
parameter sharing layers from the keras-genomics package developed by the authors of DeepBind 
(10,11). The model was visualized using Netron (18).  
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Supplementary Figure S23. Comparison of flanking contributions predicted using the DeepBind + 
MLR-based approach or measured using our alignment-based framework, (A) depicted as a matrix, 
sorted by the −ΔΔG/RT of the core or (B) depicted as an energy logo for specific cores references in 
the main text.  



 24 

 
 
Supplementary Figure S24. ΔΔG/RT measurements for each aligned core averaged over the 40 
independent sets of aligned reads from the Fkh1 SELEX-seq experiments. Rows are clustered with 
the UPGMA algorithm using Manhattan distance as the metric. In this case, Fhl1-based cores 
GACGCA and CACGCA are treated as 7-bp cores by padding each with one base either (A) 5’ of the 
core or (B) 3’ of the core. 
 

 

 
 
Supplementary Figure S25. (A/B) Plot of the electrostatic potential (EP) in the center of the minor 
groove (19) along the binding site given a C or T at position six and a variable bp at the first position 
3’ of the core. 
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Supplementary Figure S26. Structures of FOX homologs predicted using AlphaFold 2 (20,21) 
alongside DNA extracted from structural alignments with the FOXK2 co-crystal structure (PDB ID: 
2C6Y). The recognition helix is indicated in red with labeled regions of interest indicated in blue. The 
core of the DNA binding site is indicated in pink and flanking bp are indicated in green.   
 

 

 
 

Supplementary Figure S27. Depiction of the overlap between the Fkh2 motif adapted from the 
referenced ChIP-exo study (22) and an Mcm1 motif provided by the Yeast Epigenome Project (23). 
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Supplementary Figure S28. (A) Comparison of the observed relative frequency of cores and 
predicted relative frequencies based on −ΔΔG/RT measurements from our framework or (B) 
estimates based on a BEESEM-derived PWM. (C) Comparison of the observed relative frequency of 
bases flanking the core, GTAAACA, and predicted values based on −ΔΔG/RT measurements from 
our framework or a BEESEM-derived PWM. 
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