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Artificial intelligence in molecular biology
In recent years, computational methods and artificial intelligence approaches have proven uniquely suited
for studying patterns in molecular biology. In this focus issue, we spoke with researchers about using these
tools to address various biological questions and explore both current implications and future possibilities.
Anshul Kundaje
Stanford University, USA
All rights are re
Unlocking the genome’s regulatory code
Transcription factors bind complex cis-regulatory logic encoded in regulatory DNA

sequences to modulate gene transcription. Decoding this "cis-regulatory code" is

essential for understanding how genes are regulated across cellular contexts, individ-

uals, and species as well as how non-coding genetic variations impact traits and

diseases. Over the past decade, machine learning (ML), particularly deep learning,

has become a powerful tool for tackling this challenge.

Fueled by advances in high-throughput molecular profiling technologies, models of

regulatory DNA are typically trained in a supervised manner to explicitly map DNA

sequences spanning across the genome to regulatory and transcriptional activities in

one or more cellular contexts. These models have evolved to incorporate different

approaches and architectures, aiming to address key biological questions such as

deciphering the cis-regulatory code, predicting the effects of genetic variation, and

designing synthetic DNA sequences with desired properties.

Local sequence models: The most mature models focus on local sequence contexts

(typically < 4 kb), predicting outcomes such as transcription-factor binding and chro-

matin accessibility. These models have progressed from binary predictions to high-

resolution, quantitative outputs, including base-pair resolution prediction. Convolu-

tional neural networks dominate this space, often coupled with recurrent layers for

additional context. Despite being "black boxes" with opaque internal parameters,

advances inmodel interpretation techniques have shed light onmotif lexicons, and their

higher-order arrangements (e.g., spacing, orientation, combinatorial density). Local

sequencemodels have also been quite effective at predicting effects of genetic variants

and synthetic sequence perturbations on local regulatory activity. They have also

shown success in designing cell-context-specific regulatory sequences, although

mostly in cell lines. However, these models inherently do not model long-range interac-

tions, such as the influence of distal enhancers on gene expression.

Expanding the scope with long-context models: To capture long-range regulatory

interactions, new models with greater capacity—often based on transformer architec-

tures—have been developed. These "long-context models" are typically trained to

jointly predict genome-wide regulatory and transcriptional activity across thousands

of diverse cellular contexts and even across species. However, these large models

introduce challenges with interpretability and robustness and are more susceptible

to learning spurious patterns. Recent benchmarks have revealed that these large,

kitchen-sink models do not always outperform smaller, specialized, local-context

models and especially struggle to learn long-range regulatory interactions despite their

design, resulting in poor prediction of distal effects of regulatory elements and variants

on gene expression.

Several promising strategies could improve these models without sacrificing inter-

pretability and robustness. These include stage-wise training methods that progres-

sively build long-context models from local context models and model optimization

strategies that leverage multiple informative axes of variation of regulatory and tran-

scriptional activity—across the genome, across cell types and states, across diverse

data modalities, and across diverse genetic backgrounds. The deluge of multi-modal

single-cell data and large-scale perturbation screens will power these models.
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The potential of DNA languagemodels: Inspired by advances in natural language pro-

cessing, self-supervised "DNA language models" have very recently emerged as

a promising complementary approach. These models are currently trained solely on

large collections of genomic sequences across species to learn generalizable patterns

by reconstructing artificially masked or truncated DNA sequences. It remains an open

question whether these models can effectively learn representations of diverse classes

of functional DNA without using any annotation or context-specific molecular data. So

far, annotation-agnostic, long-context DNA language models of mammalian genomes

have not delivered on their promise. Although still in their infancy, if successful, these

large pre-trained models could serve as ‘‘foundations’’ to fine-tune more specialized

models on smaller datasets, potentially reducing data requirements and broadening

applications.

Toward a unified future: Looking ahead, wewill likely witness the emergence of effec-

tive long-context, supervised, and self-supervised "foundation models" for regulatory

genomics. However, smaller, interpretable task-specific models will remain indispens-

able for addressing focused biological questions and deriving robust mechanistic

insights. But we must learn from the lessons of the past to ensure rapid progress by

avoiding premature hype. Success will hinge not only on innovative model design

and training strategies but also onmeticulous data curation, exhaustive model interpre-

tation, and rigorous, adversarial benchmarking. Regardless of the approach, predictive

models of gene regulation will continue to drive hypothesis generation at unprece-

dented resolution and scale, offering exciting opportunities for model-driven discovery

and iterative experimental design.
Katherine S. Pollard
Gladstone Institute of Data Science & Biotech-
nology, USA
Investigating chromatin organization in silico

Chromatin organization is integral to how eukaryotic cells work, evolve, and break in

disease. One grand challenge is to identify the epigenetic changes in multicellular

organisms that enable a single genome sequence to generate many unique cell types.

Another important problem is discovering causal genetic variants in non-coding loci

associated with disease. Increasingly, these and other questions are being addressed

using computational models that predict local chromatin states or three-dimensional

(3D) genome folding from DNA sequences.

Why is ML so important in the study of chromatin organization? Several years ago,

the field viewed these questions as data problems. This led to the development of

imaging and genomic assays thatmeasure 3D chromatin interactions and 1D chromatin

states with ever-increasing throughput and resolution. But these observational data-

sets have several limitations. First, many tissues and cell states are difficult or impos-

sible to access. Second, understanding how chromatin organization is encoded in

DNA requires experiments that can establish causality. Machine learning addresses

both of these gaps.

In terms of bolstering observed data with model predictions, the key break-

through was the development of sequence-based models that are highly accurate

(https://doi.org/10.1038/s41588-021-00782-6,https://doi.org/10.1038/s41592-020-

0958-x). With this level of model performance, researchers can impute chromatin

data for conditions that lack measurements and design sequences with desired

epigenetic activities. Because DNA is cheaper and easier to collect than cell-

type-specific epigenetic data, whole-genome sequences now exist for about one

million people. Using these as inputs, the ML models can generate personalized

chromatin organization data across cell types at biobank scale. Such predictions

are particularly useful for the least inaccessible tissues.

Beyond the predictions themselves, ML can also help to establish mechanistic

understanding of how sequence variation affects chromatin organization. Experimental

genome editing and synthetic DNA assays enable candidate causal variants to be

tested in cells. But current editing technologies are not high throughput enough to

explore trillions of variants and variant combinations. On the other hand, models can

be queried with huge numbers of sequence modifications (in silico mutagenesis).

Furthermore, interpretation tools can distill what sequence-function relationships

https://doi.org/10.1038/s41588-021-00782-6
https://doi.org/10.1038/s41592-020-0958-x
https://doi.org/10.1038/s41592-020-0958-x


ll
Voices
a model has learned. This toolkit reveals many surprising sequences underlying chro-

matin organization, such as the importance of repetitive elements in genome folding

and transcription factors that switch from activators to repressors in different contexts.

Thus, models are helping scientists to generate novel hypotheses and to prioritize

sequences for experimental testing.

Looking ahead, there are several challenges and emerging opportunities. First, it will

be important to increase the cell-type specificity of existing models through increased

training data and changes to the methodology. Second, we need to link predicted

epigenetic changes to function so that their importance to cell biology can be investi-

gated. For example, current models can predict how a genetic variant alters chromatin

accessibility but struggle to predict downstream changes to RNA or protein levels

(https://doi.org/10.1038/s41592-024-02331-5). It will be exciting to see the next gener-

ation of sequence-based models that integrate multi-modal data from large cohorts to

solve these problems!
Jian Ma
Carnegie Mellon University, USA
Decoding single-cell genome structure and function
While we can now map the entire genome from telomere to telomere, understanding

how it is organized in 3D space and how this relates to cellular function remains a major

challenge. Advances in genomic mapping and imaging technologies have probed

different aspects of 3D genome architecture, but the principles governing nuclear struc-

ture and its role in cell function are largely unclear. A key challenge is deciphering the

spatial and temporal dynamics of multiscale 3D genome features at single-cell resolu-

tion and understanding how these variations influence gene expression and cellular

processes.

Technologies like single-cell Hi-C and genome imaging have provided new insights

into how 3D genome organization contributes to cell identity. Artificial intelligence/

machine learning (AI/ML) models are beginning to reveal deeper connections between

spatial genome features and their biological significance. However, we still lack

comprehensive models that predict how 3D genome organization shapes gene expres-

sion at the single-cell level. To address this, predictive models must integrate DNA

sequences, chromatin architecture, and epigenomic data to uncover the complex rela-

tionships driving cell function. Beyond chromatin interactions, genome function is

modulated by other biomolecules, such as RNA, proteins, and subnuclear structures

that participate in 3D interaction patterns within the nucleus. Developing multimodal

AI/ML models that capture these interactions alongside chromatin will be essential.

Such models could answer critical questions such as how chromatin is organized

into multiscale 3D structures, how functional elements collectively regulate genes,

and which nuclear features are crucial for processes like DNA replication and repair.

Additionally, cell-to-cell variability in 3D genome organization may play a crucial role

in shaping gene expression patterns and cellular behavior, yet capturing and interpret-

ing this variability remain a significant challenge.

The future of the field lies in developing more sophisticated, multimodal AI/ML

models that can comprehensively decode the ‘‘language’’ of 3D nuclear structure.

Generative AI/ML models can enable in silico characterization of interconnected

nuclear components and produce testable hypotheses to reveal underlying mecha-

nisms. Techniques such as interpretability and causal inference will further help nomi-

nate novel targets for perturbation, which are key to understanding these complex inter-

actions. By integrating diverse data types and uncovering how spatial genome features

influence gene regulation, cell function, and biological processes, these models hold

the potential to open broad opportunities for exploring the intricate relationship

between genome structure and function in health and disease.
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Optimizing gene-editing enzymes with language models
Gene-editing enzymes, such as CRISPR and its derived systems (e.g., base editors),

hold the potential to cure genetic disorders through precise genomic alterations. Chal-

lenges remain in their application for therapeutic purposes, particularly in inducing

certain types of mutations, achieving high in vivo editing efficiency at disease-relevant

genomic loci and minimizing unintended ‘‘bystander’’ and ‘‘off-target’’ edits. While

traditional optimization strategies such as directed evolution and structure-based

design have proven to be effective, they require extensive experimental efforts and

are often assessed by a single parameter (e.g., efficiencies). In contrast, protein

language models (PLMs) are deep-learning models that are trained on millions of

natural protein sequences that developed throughout evolution, a process analogous

to the training of natural language models. The inherent protein design principles are

learned by PLM, which can be exploited to predict sequence probabilities. One key

advantage of PLMs is to predict global amino acid dependencies across protein

sequences, including the amino acids that may be far apart in the primary sequence.

Consequently, the knowledge captured in pre-trained PLMs can be applied for optimi-

zation of specific proteins without a task-specific training dataset. For instance, evolu-

tionary scale modeling (ESM) has been used to enhance the activities of a uracil DNA

glycosylase (UNG) variant with altered substrate specificities. The resulting enhanced

enzyme, when coupled with spCas9 nickase, leads to transversion base editors target-

ing thymines, named TSBE (i.e., T to G/C base editor). Among the top 50 PLM-pre-

dicted UNG variants, >50% exhibited over 1.5-fold enhancement in enzymatic activi-

ties. Interestingly, most top-ranking variants reside outside of the catalytic domain,

which may have been missed if a directed evolution approach targeting the catalytic

domain had been employed (https://doi.org/10.1016/j.molcel.2024.01.021). Further-

more,models like ProMEP have successfully predicted the outcomes of adenine deam-

inasemutations, recapitulating the results from previous experimental data (https://doi.

org/10.1038/s41422-024-00989-2). These successes highlight the capacity of PLMs to

score and provide actionable guidance on candidate variants for further assessment.

Beyond functional optimization of enzymes, PLMs also hold promise in designing

de novo gene-editing enzymes, illustrated by the latest developments in open CRISPR

systems (https://doi.org/10.1101/2024.04.22.590591). Future development of PLMs

will include more extensive integration of protein structural information, which will

enhance their predictive power for protein-protein and/or protein-nucleic acid

interactions. As these models evolve, they will likely become indispensable tools in

the gene-editing field, offering an efficient path to design, evaluate, and implement

next-generation therapeutic enzymes.
Mengjie Chen
University of Chicago, USA
Emerging challenges in high-resolution RNA modification mapping
Antibody-based transcriptome-wide mapping methods, including MeRIP-seq, have

greatly advanced our understanding of RNA modifications. Emerging technologies,

includingm6A-SAC-seq, eTAM-seq, and GLORI, have leveraged enzymatic and chem-

ical reactions to improve m6A quantification and mapping resolution. However, these

approaches are dependent on enzyme efficiency, relative selectivity, and RNA acces-

sibility, which introduce challenges for statistical modeling and data analysis.

Enzyme efficiency refers to the maximum rate at which mutations are induced onto

target nucleotides. Unlike bisulfite conversion, where efficiency typically exceeds

99%, achieving a conversion rate above 90% can be challenging for enzyme-based

approaches. Mutation rates are also affected by enzyme sequence preferences. For

example, m6A modifications in the common G-m6A-C consensus motif tend to show

higher mutation rates than those in the less common A-m6A-C motif, highlighting the

importance of sequence context in conversion efficiency.

Relative selectivity regards the possibility that both m6A and unmethylated adeno-

sines can be modified due to their similar chemical properties. Whereas eTAM-seq

and GLORI target unmethylated adenosines, m6A-SAC-seq targets m6A. For m6A-

SAC-seq, off-target mutations at unmethylated adenosines are a major concern,

https://doi.org/10.1016/j.molcel.2024.01.021
https://doi.org/10.1038/s41422-024-00989-2
https://doi.org/10.1038/s41422-024-00989-2
https://doi.org/10.1101/2024.04.22.590591
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particularly given that unmethylated adenosines are �250 times more abundant than

m6A. Accurate modeling of off-target conversion efficiency is therefore essential.

RNA accessibility refers to the proportion of RNA molecules accessible to enzyme

treatment, which can vary based on RNA secondary structures and othermodifications.

In eTAM-seq, RNA accessibility is estimated using in vitro transcription (IVT). Briefly,

RNA is converted into cDNA and linearly amplified into RNA, preserving sequence

and expression information without introducing any modifications. Accessibility is

then modeled as a site-specific parameter shared between enzyme-treated RNA

samples and IVT controls. The observedmethylation is a product of the truemethylation

level and site accessibility, requiring statistical adjustment to estimate the true under-

lying methylation level.

While technologies like m6A-SAC-seq, eTAM-seq, and GLORI have advanced our

understanding of the transcriptome by allowing us to map RNA modifications at

single-base-pair resolution, they bring their own set of challenges that must be ad-

dressed through careful experimental design and robust statistical modeling. Statistical

models must then be sophisticated enough to factor in potential off-target effects,

biases linked to local sequence context, and variations in enzyme efficiency across

different batches. To address these complexities, Bayesian inference approaches

could be employed to meticulously model the data generation process, taking into

consideration the detailed technical aspects of each method. As the field evolves,

further refinement of these techniques and analytical approaches will be essential to

unlock a deeper understanding of the role of RNA modifications in gene regulation

and cellular function.
Remo Rohs
University of Southern California, USA
Toward a complete structural landscape
The 2024 Nobel Prize in Chemistry awarded for protein design and protein structure

prediction breakthroughs highlights the fascinating possibilities in biology andmedicine

enabled by computational and statistical methods, particularly ML and AI.

Protein structure is the window into understanding protein function. Solving the 3D

structure of a protein experimentally is laborious and not always possible. In addition,

experimental structures are often limited to protein fragments and subjected to crystal-

lization effects. Cryoelectron microscopy has overcome some of these limitations,

although derivingmultiple conformations or information on flexibility of amolecule is still

challenging. Molecular dynamics simulations partially fill this gap but have their own

limitations since they are computationally expensive, require significant run time for

meaningful results, and often remain restricted to sampling of a local energy minimum.

AlphaFold dramatically changed the opportunities for structure-based research in

biology, chemistry, andmedicine. Structure-based approaches are no longer restricted

to studies that involve previously solved structures. By taking advantage of statistical

ML and AI methods, AlphaFold uses data of known structures, which are available in

the Protein Data Bank (PDB), to predict the 3D structure, requiring only a protein’s

amino acid sequence. This, in turn, has a large impact on the acceleration of the devel-

opment of structure-based methods to answer questions based on molecular interac-

tion, binding, and recognition.

Protein-DNA readout is a field of research that benefits from the availability of the 3D

structure of any protein of interest. The binding of a transcription factor to a specific site

in the genome regulates genes and their expression. In the past, laborious experiments,

which included protein purification and DNA sequencing, were necessary to derive the

nucleotide sequence preference of DNA target sites selected by a DNA-binding protein.

A recently published AI method, DeepPBS (https://doi.org/10.1038/s41592-024-

02372-w), can predict the sequence specificity of any DNA-binding protein. The prob-

ability of each nucleotide occurring at a given position in the DNA target site is

described as DNA-binding specificity of a protein. DeepPBS uses the 3D structure of

a protein-DNA complex, which can be solved experimentally or derived computation-

ally with AlphaFold 3 or RoseTTAFoldNA without DNA sequence information to predict

the identity of nucleotides contacted by the protein.
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The prediction of nucleic acid structures has experienced similar advances as the

prediction of protein structures, although the number of experimentally determined

DNA andRNA structures in the PDB ismuch smaller than that of proteins. For predicting

the sequence-dependent 3D structure of the DNA double helix, known as DNA shape,

a data-mining method, DNAshape, was initially developed. DNAshape uses a sliding

pentamer window with structural information derived from computationally predicted

DNA conformations, which cover the entire nucleotide sequence space in contrast to

experimental DNA structures. A recently published AI method, Deep DNAshape

(https://doi.org/10.1038/s41467-024-45191-5), expands on this approach to predict

DNA shape features of k-mers of any length. This method enables the exploration of

the role of flanking regions on conformations at the core motif of transcription factor

binding sites.

Structure-based AI methods for drug design are likely to have a large impact. Current

computational methods are used to virtually screen large libraries of existing drug

candidates. In fact, the available chemical space is many orders of magnitude larger

than drug libraries. AI methods are being developed to design small molecules. One

example is a recently published method, DrugHIVE (https://doi.org/10.1021/acs.jcim.

4c01193), which uses protein structure to design new and previously unknown chem-

ical compounds based on interactions with protein cavities or surfaces. Using a density

description for small molecules, DrugHIVE enables the exploration of the vast chemical

space of drug-like molecules with possibly unlimited opportunities to treat diseases.
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