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Predicting DNA structure using a deep
learning method

Jinsen Li 1, Tsu-Pei Chiu 1 & Remo Rohs 1,2,3,4

Understanding the mechanisms of protein-DNA binding is critical in compre-
hending gene regulation. Three-dimensional DNA structure, also described as
DNA shape, plays a key role in these mechanisms. In this study, we present a
deep learning-based method, Deep DNAshape, that fundamentally changes
the current k-mer based high-throughput prediction of DNA shape features by
accurately accounting for the influence of extended flanking regions, without
the need for extensive molecular simulations or structural biology experi-
ments. By using the Deep DNAshape method, DNA structural features can be
predicted for any length and number of DNA sequences in a high-throughput
manner, providing an understanding of the effects of flanking regions on DNA
structure in a target region of a sequence. The Deep DNAshape method pro-
vides access to the influence of distant flanking regions on a region of interest.
Our findings reveal that DNA shape readout mechanisms of a core target are
quantitatively affected by flanking regions, including extended flanking
regions, providing valuable insights into the detailed structural readout
mechanisms of protein-DNA binding. Furthermore, when incorporated in
machine learning models, the features generated by Deep DNAshape improve
the model prediction accuracy. Collectively, Deep DNAshape can serve as
versatile and powerful tool for diverse DNA structure-related studies.

Binding interactions between DNA binding proteins such as tran-
scription factors (TFs) and their DNA target sites are crucial for gene
regulation; thus, it is vital to fully understand TF-DNA binding
mechanisms. Thesemechanisms canbe viewed from twoperspectives:
base readout and shape readout1,2. Base readout occurs through direct
contacts between amino acids and DNA bases, and a relatively strict
pattern is followed. For instance, the zinc finger TF family heavily relies
on base readout to recognize DNA targets3,4. Shape readout happens
when proteins interact with the double helical conformation, rather
than interacting directly through hydrogen bonds with certain
atoms on nucleobases. As an example, proteins containing positively
charged amino acids (e.g., arginine, protonated histidine, and lysine)
may favor a certain DNA structural feature, such as a narrower minor
groove that is more negatively charged1. Some TFs from the

homeodomain family utilize shape readout in specific DNA regions
within the core binding site5–9. Narrower minor groove regions can
result from diverse DNA sequences, providing an additional signal for
binding specificity. Another example is the myocyte enhancer factor-2
(MEF2) family,whichuses shape readout in the center of its degenerate
motif 10. In general, TFs use a combination of base and shape readout
modes to achieveDNAbinding specificity. Themismatch-inducedDNA
structural alterations that influence TF-DNA binding affinity prove the
importance of shape readout11. However, the influence of the base and
shape readout mechanisms can be difficult to parse.

The influence of shape readout in DNA binding mechanisms
extends to various aspects of DNA structural features, also known as
DNA shape features. To measure shape readout quantitatively, one
must first define DNA shape. This article focuses on the B-form
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representation of DNA molecules - the canonical right-handed double
helix. Three-dimensional (3D) DNA shape features describe the global
and local relationships between nucleobases, base pairs, and sugar-
phosphate backbones12. Although DNA oligonucleotides are flexible
molecules with varying DNA shape features, certain optimal con-
formations may be intrinsically favorable, as seen in their static or
sometimes equivalent time-averaged representation of DNA shape
features13. Proteins that favor certain intrinsic DNA shape featuresmay
bind DNA targets with other DNA structures; however, they may
require a higher energy to maintain the binding, thus exhibiting a
lower binding affinity6.

The energy required to alter an unfavored static DNA structure
may depend on the DNA flexibility. Therefore, it is important to con-
sider the conformational flexibility of the DNA and fluctuations in its
shape features. As revealed by, for instance, molecular dynamics (MD)
simulations, DNA shape features fluctuate in various ways14–16. For
example, CpG, CpA and TpA base-pair (bp) steps are generally more
flexible17, whereas A-tracts consisting of consecutive ApA, ApT, or TpT
bp steps are conformationally rigid17,18. The length of A-tracts has also
been observed to impact the flexibility of neighboring regions19.
Methylated cytosine induces DNA flexibility changes that in turn
influence nucleosome stability20,21. Another recent study using MD
simulations showed that conformational flexibility contributed by the
flanks plays an important role in homeodomain binding22,23. However,
no high-throughput methods have been proposed yet to predict DNA
shape fluctuations.

Methods such as MD or Monte-Carlo (MC) simulations and
X-ray crystallography (XRC) can be used to acquire DNA structures
for short DNA fragments. Methods such as Curves12,24,25 and 3DNA26

have been developed to derive DNA shape features from computa-
tional trajectories or experimentally solved structures. High-
throughput methods such as DNAshape27–29 have been introduced
to circumvent the difficult and sometimes impossible task of simu-
lating or experimentally solving structures. Numerous studies have
successfully employed the DNAshape method27, demonstrating the
effectiveness of using high-throughput methods to predict DNA
shape features30–34.

Nevertheless, although DNAshape27–29 is an efficient method, it
relies entirely on a pentamer query table containing all possible pen-
tamers compiled from extensive MC simulations35. The pentamer
length limits this method because only the nearest and next-nearest
neighbors are accounted for when considering the influence of the
sequence environment on the center of the pentamer. As for other
data sources, such as MD simulation data and experimental structures
in the Protein Data Bank (PDB)36, only tetramer query tables could be
generated due to data paucity28. Therefore, effects from longer-range
neighbors are totally neglected in this query table setup.

Our approach, Deep DNAshape, overcomes the limitation of
DNAshape, particularly its reliance on the query table search key. This
advancement is pivotal, given that the limitation was only caused by
the available amount of data. Deep DNAshape enhances the capability
to discern how the shape at the center of a pentamer region is influ-
enced by its extended flanking regions, providing amodel that offers a
more accurate representation of DNA.

The pentamer query table contains all possible pentamers for
DNA shape features of the central bp, considering up to a 2-bp flanking
region, which consists of the nearest-neighbors and next-nearest-
neighbors. Despite this definition, flanking regions exceeding two bp
may still be influential, which has been shown for the central TpA
step37. For someTFs having a long coremotif, amore complete viewof
DNA shape considering longer-range flanking regions is necessary. In
addition, some DNA shape parameters are bimodal15, and statistically
calculating an average value for the query table may not capture the
whole picture. The ability to approximate DNA shape features using
only sequence information such as mono- and dinucleotides38 also

highlights the limitations of the pentamer query table. Although it is
possible to generate a query table for longer k-mers, the number of
simulations that would be necessary to cover all longer k-mers is
exponentially higher; meanwhile, there are not enough existing
experimental structures28. Therefore, there is a need for amethod that
can accurately predict DNA shape features in a high-throughput
manner using only limited data while considering longer-range effects.

To develop such a model, we began with assumptions about how
the 3DDNA structure is affected by sequence. Firstly, we assumed that
DNA shape features at each bp are mainly influenced by their neigh-
boring bp, and that this influenceweakens with distance. Secondly, we
assumed that this influence can be statistically inferred. Therefore, we
designed a specialized deep learning architecture to dealwith variable-
length DNA sequences and computed the neighboring effects of
flanking regions in a layer-by-layer manner (Fig. 1a–d, Supplementary
Fig. 1). We trained the model on DNA shape features that were pre-
viously analyzed and compiled from MC simulations (Fig. 1b, Supple-
mentary Figs. 2–3) andwhich hadbeen experimentally validated27. The
model now considers longer range neighboring effects compared to
current data source limitations (Fig. 1e) and can be used for predicting
DNA shape features from any given sequence (Fig. 1f, g). We then
evaluated the predicted DNA shape features with a tetramer query
table derived from MD simulations (Supplementary Table 1)28. We
compared predictions from our resulting model, Deep DNAshape, to
predictions from our original pentamer-based DNAshape (DNA-
shapeR) method39 (Figs. 2–4, Supplementary Table 2). To thoroughly
benchmark the model, we also trained it on alternative DNA shape
sourced from experimentally solved structures40 andMD simulations41

(see Supplementary Information), leading to the generation of Deep
DNAshape (Expt) and Deep DNAshape (MD). These models were then
compared with the MC-trained Deep DNAshape method, along with
comparative analysis across all model variants (Supplementary Fig. 4,
Supplementary Table 3).

In addition, the design of the model unlocks the potential to
examine systematically how DNA shape fluctuations are affected by
extended flanking regions. We previously generated a query table
containing standard deviation (SD) values for 13 DNA shape features
and used them in a machine learning study28. Although these values
were statistically computed, nevertheless, themodel performancewas
significantly improved when the values were included28. We assumed
that these SD values were highly correlated with true fluctuation
values. Therefore, although conformational flexibility of DNA is
important42, it is the fluctuation of shape features that is difficult to
access and frequently overlooked in research. Here, we used the same
approach as in predicting the static DNA shape to predict DNA shape
fluctuation (FL) values: specifically, we directly calculated fluctuation
from MC simulations using Curves12. We investigated whether these
high-throughput-predicted fluctuation values aligned with previous
findings on DNA flexibility42, and we considered the insights that these
fluctuation values might provide.

Next, we compared the Deep DNAshape model with the original
pentamer-based DNAshape method. We tested our model on data
from TF-DNA binding assays for quantifying the relative binding affi-
nity of DNA sequences for any given TF. These binding assays con-
sisted of multiple in vitro experimental methods, such as protein
binding microarray (PBM)43, HT-SELEX44 and SELEX-seq7. We pre-
viously used these datasets in conjunction with an expanded set of 13
DNA shape features including groove features, inter-bp features, and
intra-bp features (see Methods), demonstrating the effectiveness of
DNA shape features in predicting TF-DNA binding specificities using
L2-regularized multiple linear regression28. We tested DNA shape
predictedbyDeepDNAshape against the samedatasets to determine if
improvements could be detected compared to the original pentamer
DNAshape model (Fig. 5). Finally, we showed the potential of Deep
DNAshape by processing large genomic-level data.
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Results
Deep DNAshape predicts DNA shape and shape fluctuations
considering extended flanking influences without biases
MC simulations were used to generate 3D structural predictions for
numerous DNA samples with analyzed DNA shape values for 2121
different sequences27. For each individual DNA shape feature, a
training file containing all sequences and their sequence–position-
wise DNA shape values was compiled from the simulation data.
Despite the varying lengths of these sequences, the Deep DNAshape
model was designed to accommodate such variation (Fig. 1a–d,
Supplementary Fig. 1). Following hyperparameter searches on
training and validation data (Supplementary Figs. 2, 3), each model
was trained on the entire training data and, when used together, was
able to predict any DNA shape feature for any length of DNA
sequence. The predictions consider only the local bp information of
nearby bp (Supplementary Fig. 1). The models can predict DNA
shape features by considering up to 7-bp flanking regions, and the
number of bp of flanking regions considered can be selected for
optimal accuracy (Fig. 1e–g). Models were trained with minimal
overfitting, while maintaining high accuracy in deeper layers, as
evident from the training and validation split samples in the
hyperparameter searches (Supplementary Figs. 2, 3).

We validated our predictions against tetramers compiled from
MD simulations15 (Supplementary Table 1) and our previous pentamer
query table (Supplementary Table 2). Additionally, we validated our
predictions by calculating and comparing the average inter-bp fea-
tures for 10 dinucleotides and intra-bp features for A-T and C-G bp,
considering all possible flanking regions predicted by the Deep DNA-
shape model and its variants using different data sources (Supple-
mentary Fig. 4, Supplementary Table 3; also refer to Supplementary
Text). This approach eliminated theuseof a query table andenabledus
to predict DNA shape features affected by longer flanking regions,
compared to using a forcibly generated hexamer or heptamer query
table with large numbers of missing values (Fig. 2a–d, Supplementary
Figs. 5–7, Supplementary Fig. 8 for Deep DNAshape (MD)). Using our
Deep DNAshape method, the inferred DNA shape values based on
effects of extended flanking regions (Fig. 2a–d, Supplementary
Figs. 5–7) are almost perfectly aligned (Supplementary Table 2) with
statistically computed values. Compared to an interpolated query
table, ourmethod corrects the biases from different distributions of k-
mers and artifacts from molecular simulations or experiments using
DNA fragments (Supplementary Fig. 9).

By performing high-throughput prediction of DNA shape features
considering extended flanking regions,DeepDNAshape canbe used to
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Fig. 1 | Deep DNAshape schematic. Deep DNAshape model (a) and training data
for the model (b). Sequences used in simulations are pooled together, and corre-
sponding DNA shape values are assigned to each position of each sequence. Some
values, such as MGW at the terminal bp, are not defined and therefore excluded.
c Schematic representation of the Deep DNAshape model. DNA sequences go
through several ‘shape layers’. Each time the model goes through a shape layer,
features for each individual position are passed to its nearby two positions,
allowing one additional consideration for the flanking region. d Simple diagram of
‘shape layer’. In each layer, features from neighboring nodes are collected and
computed with information in each current node. Features are updated for each
nodeon the sequence. SeeMethods for details. eCapacity comparisonbetween the

Deep DNAshape model and current data limitations. The shown labels ‘MC’, ‘XRC’
and ‘MD’ are current limitations to generate pentamer or tetramer query tables
sourced from Monte Carlo simulations, X-ray crystallography, and molecular
dynamics simulations, respectively. f Deep DNAshape model usage. Deep DNA-
shape can process a given DNA sequence as a string of characters (A, C, G, and T)
and predict any specific DNA shape feature for each nucleotide position of a
sequence. g All DNA shape predicted by the Deep DNAshapemodel. In addition to
staticDNA shape features, themodel canpredictDNA shape fluctuations (Cartoons
do not represent real values of low or high. Values can be negative or positive for
angular shape parameters.). Shown are graphical explanations of the four most
frequently-used DNA shape features (MGW, ProT, Roll, and HelT).
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investigate the effects of flanking regions on the core DNA structure
without requiring MD simulations or X-ray crystallography (XRC)
experiments. We initially examined four DNA shape features, minor
groove width (MGW), propeller twist (ProT), Roll, and helix twist
(HelT), at the core of a DNA fragment for all sequence combinations,
with the goal of examining the general neighboring effect on different
cores (Supplementary Fig. 10). The static shape of the core can show
bimodal or even trimodal distributions, affected by different flanking
sequences (Supplementary Fig. 10).

One DNA fragment worth studying is the A-tract, which contains
at least three consecutive ApA, ApT, or TpT bp steps without a flexible
TpA bp step, and has been associated with a narrower MGW1,9. We
permutated all k-mers with certain sequences as their cap, such as
AAAA-NNNNNNN-AAAA, for 15-mers with A-tract caps. Next, we pre-
dicted the MGW using Deep DNAshape compared to counterparts
capped by GCGC ends. This approach permitted us to see effects from
different flanking cap combinations (Fig. 2e, f). The result indicated
that A-tracts increase the flanking MGW on their 5’ end and decrease
theMGWon their 3’ end. In other words, theMGW for a short strand of
DNAwill be upregulated at the 3’ end and downregulated at the 5’ end,
if accompanied by two A-tracts at the 5’ and 3’ ends. The A-tracts
showed ageneral trendof decreasing theMGWfrom5’ to 3’, consistent
with previous individual structural studies45,46.

The dynamics of DNA sequences can be difficult to describe. In
Deep DNAshape, DNA shape fluctuations can be predicted to repre-
sent conformational flexibility for an individual DNA molecule. The
training data are based on a compiled shape fluctuation dataset from
MC simulations. Different bp or bp steps have different intrinsic flex-
ibilities. These fluctuation values are comparable to values that are
directly computed from MD simulations (Supplementary Table 1)15.
The values contribute to the global bendability, twistability, and

prolongability of DNA double helicalmolecules. The effects of A-tracts
on fluctuations can also be visualized (Supplementary Fig. 11). We
observed thatflankingA-tracts greatly elevate theMGWfluctuations of
the cores (Supplementary Fig. 11), whereas GCGC ends slightly
decrease the MGW fluctuations of the cores.

Deep DNAshape is superior to pentamer DNAshape in eluci-
dating TF-DNA binding
High-throughput prediction of DNA shape can be applied to data from
experimental binding assays on TF-DNA binding (Fig. 3a). The
pentamer-based DNAshapemethod27–29,39,47 lacked the ability to utilize
longer-range flanking regions of sequences. Therefore, this method
cannot diversify DNA shape changes in the core binding site affected
by extended flanking regions (Fig. 3b) that may still contribute to TF
binding specificity. For example, the DNA binding affinity of basic-
helix-loop-helix (bHLH) TFs binding to enhancer boxes (E-boxes)
(Fig. 3c) is greatly affected by the flanking regions48. The pentamer-
based DNAshape method cannot access a flanking region-associated
change in the DNA shape of the central ‘CG’ dinucleotide in the most
common E-box motif ‘CACGTG’. In the Deep DNAshape model, a
‘shape layer’ capable of utilizing extended flanking regions (Fig. 3b)
may provide additional insights, such as into how bHLH proteins bind
to their target DNA sequences.

We investigated genomic-context PBM data for three human
bHLHTFs,Max, c-Myc, andMad2.WeplottedMGWpredictions for the
top 25% of aligned binding data (Fig. 3d, Supplementary Figs. 12, 13)
and compared them to the predictions by the pentamer-based DNA-
shapemethod. Subtler differences canbe seenwith DeepDNAshape in
the central motif cores than was possible with the pentamer-based
DNAshape method, even though most of the cores had the same
sequence identity ‘CACGTG’ (Fig. 3e–h). When we filtered out the TF-

N-N-N-A-N-N-N
5’ 3’

Flanking Flanking

M
G

W
 (Å

)

N-N-N-C-N-N-N
5’ 3’

Flanking Flanking

a

b

c

d

e

f
n=16,384

n=16,384

Fig. 2 | Minor groove width predicted by Deep DNAshape using extended
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possible 7-mers. a, cMGW values as if we constructed a 7-mer query table from all
available MC simulations directly. b, d MGW predictions generated by the Deep
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e–f Boxplots showing MGW values predicted by Deep DNAshape for random
sequences with fixed 5’ and 3’ caps. e Predictions are capped by ‘GCGC’, and
f Predictions are capped by ‘AAAA’. Center line indicates themedian. Box limits are
75th and 25th percentiles. Thewhiskers extend 1.5 times the interquartile range (IQR)
from the top and bottom of the box. Outliers are removed in boxplots.
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ods on TF-DNA binding data. a General pipeline to apply Deep DNAshape on TF-
DNA binding assay data. b Comparison of methodology to predict DNA shape
features from Deep DNAshape and pentamer-based DNAshape methods. c Co-
crystal structure of DNA-bound Max protein homodimer (PDB ID: 1AN2). Flanking
regions indicate regions without protein contacts. Core is the region with protein
contacts. d MGW predicted by pentamer-based DNAshape method vs. Deep
DNAshape method for Max protein and DNA binding data, in order of relative

binding affinity. Color represents DNA shape values. Data are aligned basedon core
binding site. Only top 25% of binding data are used. e–h Scatterplots of central four
core MGW values predicted by Deep DNAshape and pentamer-based DNAshape.
Gaussian kernel density estimation plot is added to show the contour of scatter
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DNAshape method was unable to reveal.
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DNA binding dataset to include only sequences with ‘CACGTG’ in the
core, we observed a consistent negative correlation between the
binding affinities and the Roll and Roll-FL values predicted by Deep
DNAshape (Supplementary Fig. 14), regardless of the in vitro experi-
ment platform. These correlations are also observable using Deep
DNAshape (Expt) (Supplementary Fig. 15a–c), but notwhenusingDeep
DNAshape (MD) (Supplementary Fig. 15d–f). Such visualizations had
been unachievable with the pentamer-based DNAshape method
because this method only considers 2-bp flanking regions (which, in
thepresent case, remain constant). These results highlight the effect of
the flanks and the need for a method that accounts for more than the

nearest- and next-nearest neighbors. ThroughDeepDNAshape, we can
propose a hypothesis for the potential bindingmechanismused by the
bHLH family of TFs to distinguish identical binding cores (Supple-
mentary Fig. 16), although this hypothesis will require further investi-
gation to confirm.

We also investigated some of the well-studied homeodomain
TFs from the homeobox (Hox) family (Fig. 4). Extradenticle (Exd)
and Sex combs reduced (Scr) heterodimerize to bind to DNA
sequences. The resulting Exd-Scr heterodimer (Fig. 4a–c) prefers a
narrower MGW at the two ‘AY’ steps (Y: pyrimidine) in its motif
‘NGAYNNAY’7. Another heterodimer, Exd with Ultrabithorax (Ubx),

Fig. 4 | Evaluations ofDeepDNAshape onextendedflanking regions usingHox-
TF binding data. a Co-crystal structure of DNA-bound Exd-Scr heterodimer (PDB
ID: 2R5Z). Arrows indicate locations of insertion from Exd (cyan) and Scr (green)
arginine residues into the minor groove. b, c MGW predicted by the pentamer-
based DNAshape and Deep DNAshape methods, for Exd-Scr SELEX-seq data. Lines
are calculated based on cutoff values of relative binding affinities. Darker colors in
plot correspond to sequences with higher binding affinities. The comparison of the
two panels shows that Deep DNAshape predicts the MGW of the flanking regions
and the additional Exd minimum in MGW that the pentamer-based DNAshape

method was unable to predict. d Co-crystal structure of DNA-bound Exd-Ubx het-
erodimer (PDB ID: 4CYC). Arrows indicate locations of insertion from Exd (cyan)
and Ubx (green) arginine residues into the minor groove. e, f MGW predicted by
the pentamer DNAshape and Deep DNAshape methods, for Exd-Ubx SELEX-seq
data. Lines are calculated based on cutoff values of relative binding affinities.
Darker colors in plot correspond to sequences with higher binding affinities. The
comparison of the two panels shows that DeepDNAshape predicts theMGWof the
flanking regions and the additional Exdminimum inMGW that the pentamer-based
DNAshape method was unable to predict.
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does not have this preference at the second ‘AY’ step7 (Fig. 4d–f). Exd
itself has another arginine in the N-terminal tail, located on the 5’
side immediately upstream of the motif that inserts into the DNA
minor groove9. Compared to the pentamer-based DNAshape, Deep
DNAshape can predict DNA shape features while considering longer
flanking regions and in the terminal regions of DNA target sites.
Using Deep DNAshape, we revealed a narrower MGW at the correct
locations according to co-crystal structures using the aligned 16-mer
SELEX-seq data (Fig. 4b, c, e, f). Furthermore, for Scr, hypotheses can
be made that the first ‘AY’ dip in MGW is required for binding, which
is seen across high- to low-binding-affinity sites. The binding affinity
is strengthened by a second ‘AY’ dip and by an additional dip for Exd
binding for its N-terminus. For Ubx, unlike the pentamer-based
DNAshape method, Deep DNAshape predicted the first ‘AY’ dip in
the MGW at both A and Y bases (Fig. 4e, f). This observation is well-
aligned with other Hox protein research on the influence of DNA
shape6.

Deep DNAshape exhibits improved prediction accuracy for TF-
DNA binding specificity
The mechanisms of TF-DNA readout are complex, leading to sub-
stantial research on the use of machine learning to improve the pre-
diction accuracy for TF-DNA binding specificity28,49,50. In previous
studies, we have successfully improved the performance of multiple
linear regression tasks on TF-DNA binding affinity data by incorpor-
ating DNA shape features27,28 (Fig. 5a). This DNA shape encoding
approach reduced the degrees of freedom when using k-mer encod-
ing, while maintaining the same level of performance. These models
utilized both DNA sequence and shape features to achieve improved
performance.

With the introduction ofDeepDNAshape,which considers longer-
range effects, we can now replace the DNA shape features in these
machine learning models with the ones predicted by Deep DNAshape.
Models using DNA shape features predicted by Deep DNAshape out-
perform models using features predicted with the pentamer-based
DNAshape version (Fig. 5b, c). Furthermore, by using Deep DNAshape
derived features in combination with fluctuation values, we were able
to surpass the performance of the 3-mer model with fewer degrees of
freedom (Fig. 5d). Additionally, the updated fluctuation values greatly
improved the performance of themodel compared to the previous SD
values28 (Supplementary Fig. 17). From amachine learning perspective,
the DNA shape and fluctuation values predicted by Deep DNAshape
contain more relevant information. We subsequently compared Deep
DNAshape with its variants trained by different underlying data sour-
ces, finding that their performances were relatively similar (Supple-
mentary Fig. 18). Deep DNAshape retains its performance in deeper
layers that consider longer flanking regions, while the variants peak at
layer 2 or 3 (See Supplementary Text).

Deep DNAshape reveals a more conserved relationship of DNA
shape in transcription start sites between Drosophila species
One key advantage of the DNAshape method is its ability to perform
high-throughput predictions that can be easily applied to genomic-
level data51. To assess the performance of Deep DNAshape on a large
dataset, we used a dataset of TSSs from four Drosophila species (D.
melanogaster, D. simulans, D. sechellia, and D. pseudoobscura)52. Pre-
vious research highlighted the importance of structural features in
protein binding at TSSs53. Our analysis of DNA shape features at tran-
scription start sites (TSSs) for these fourfly species revealed conserved
relationships in DNA shape features among these genomic regions

Fig. 5 |WorkflowofutilizingDeepDNAshape inmachine learningmodeling and
performance comparison of binding specificity predictions. a Schematic
representation of predicting TF-DNA binding specificity with L2-regularized mul-
tiple linear regression model, using encoded sequence features and DNA shape
features. b–d In vitro TF-DNA binding experimental data used in these models
include gcPBM, SELEX-seq, and HT-SELEX data. b R2 performance comparison of

1mer+4shapemodels between the pentamer-basedDNAshape andDeepDNAshape
methods. c R2 performance comparison of 1mer+13shape models between the
pentamer-based DNAshape and Deep DNAshape methods. d R2 performance
comparison between 1mer+13shape+FL models (representing the Deep DNAshape
approach with all available features) and 3mer models without using DNA shape
features.
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despite sequence differences51. Data for this analysis were derived
from gene expression experiments52, and Deep DNAshape was able to
process these data in a matter of minutes on amachine equipped with
an NVIDIA A100. Our results showed more evolutionarily conserved
relationships in the genomic structural features across these four fly
species, as evidenced by the MGW, ProT, Roll, and HelT values (Sup-
plementary Fig. 19, Supplementary Table 4).

Discussion
In this study, we introduce Deep DNAshape, a high-throughput deep-
lerarning method that accurately predicts 3D DNA structural para-
meters, or DNA shape, for any DNA sequence. Our pentamer-based
high-throughput prediction method, DNAshape, successfully pre-
dicted DNA shape features, including MGW, inter-bp features, and
intra-bp features28,39, and was useful for studying structural TF-DNA
binding mechanisms without the need of extensive molecular simu-
lations or structural biology experiments. However, it had several
major drawbacks and limitations.

First, DNAshape relied entirely on a pentamer query table to
predict DNA shape features at central positions of a pentamer. Thus, to
predict the DNA shape features for the pentamer core, only two bp of
adjacent nucleotides in each direction were considered. The query
table could not cover the full two bp of possible flanking combinations
for inter-bp features, and any sequences in the flanks beyond two bp
were not included in predictions. This query table may be sufficient if
flanking regions over two bp away do not contribute to DNA shape at
the core of the target sequence at first approximation. However, evi-
dence has shown48 that such extended flanking regions may affect the
binding affinity and DNA shape at the core of the DNA fragment of
interest. Such effects are evident in the training curve (Supplementary
Figs. 2, 3) of Deep DNAshape.

Second, sequence combinations of the flanking regions outside
the pentamers were not evenly distributed in the simulation data,
which introduced biases towards each pentamer calculation (Supple-
mentary Fig. 9). For example, if a pentamer is ‘ACGTA’ and the only
heptamer in the simulation data is ‘CACGTAG’, assuming the third bp
away from the center is still affecting the DNA shape in the core, the
prediction of DNA shape features for ‘ACGTA’ is always biased towards
‘C’ and ‘G’ flanking the pentamer.

Our proposed Deep DNAshape method (Fig. 1) addresses the
limitations of our previous method and significantly improves the
ability to predict DNA shape. Unlike the pentamer-based DNAshape
method that relied on pentamer query tables and sliding-window
algorithms to assign DNA shape values, DeepDNAshape eliminates the
use of these tools. All k-mers needed to occur at least once in the
simulation data to complete the pentamer query table, but table
completion was not sufficient to prevent statistical bias or artifacts.
Even with pentamers that occurred more than 250 times28 in the
simulation data, the data still did not fully cover all hexamers (Sup-
plementary Figs. 6 and 7), let alone heptamers (Fig. 2a, b, Supple-
mentary Fig. 5), octamers, or longer k-mers. Different flanking regions
have different effects on the DNA shape features at the core of DNA
target sites, and these influences may be relevant to sequence com-
ponents and are inferable. Deep DNAshape infers the missing values
with the learnt influence of flanking regions on the core, while not
harming the prediction considering short flanking regions (Supple-
mentary Table 2).

Because the method learns the effects of flanking regions and
predicts DNA shape features in a layer-by-layer manner, it is self-
constrained. Each new layer infers the DNA shape features based on
the DNA shape features inferred by its previous layer, while con-
sidering one more bp of flanking regions. Outputs of all layers in the
training are used in calculating the loss function, enabling themodel
to predict DNA shape features considering any length of flanking
regions, with near-zero overfitting in deeper layers (Supplementary

Figs. 2 and 3). The Deep DNAshape method establishes a general
framework for predicting response variables at the single-
nucleotide level, considering local environments for variable
lengths of DNA, and provides valuable improvements upon the
widely used DNAshape method.

DNA shape information is valuable in understanding TF-DNA
binding events1,2,28,48,54–56. One crucial application of the Deep DNA-
shape method is to investigate DNA shape preferences in TF-DNA
binding. With the ability to predict accurate DNA shape features con-
sidering long-range flanking regions, our results provide insight into
TF-DNA binding interactions that were previously challenging to
investigate (Figs. 3 and 4). To quantify the extent to which Deep
DNAshape provides more information content than our pentamer-
based DNAshape method, we applied it to the prediction of TF-DNA
binding specificity and found a significant improvement compared to
pentamer-based DNAshape (Fig. 5). The Deep DNAshape method still
operates in a high-throughput manner, allowing for the investigation
of data on a genomic scale. In a brief application, we demonstrated
closer evolutionary relationships in DNA shape parameters between
four Drosophila species in TSS regions (Supplementary Fig. 19). Other
recent studies57–62 incorporating DNA shape features derived from the
pentamer model will very likey benefit from using Deep DNAshape.
Thus, the Deep DNAshape method unlocks a whole new level of pos-
sibilities for genomic studies of DNA shape.

Besides training the Deep DNAshapemodel usingMC simulations
as the underlying data, the model is capable of being re-trained using
alternative data sources. Our benchmark analysis revealed that the
Deep DNAshape variants Expt (trained using experimentally solved
structural data) and MD (trained by MD simulation data) provided
similar DNA shape predictions and performance metrics across mul-
tiple applications. However, the underlying data of these variants were
affected by noise, artifacts, or low coverage (see Supplementary Text),
makingMCsimulations the current optimal choice for studying effects
of longer flanking regions. Future advancements in MD simulations
could allow Deep DNAshape to be easily transitioned to using such
data as the underlying source.

In addition to predicting DNA shape, Deep DNAshape is also a
general framework for processing variable DNA lengths in a layer-by-
layer manner, by using expanded neighboring-bp information in DNA
sequences and by inferring response variables (e.g., nucleosome
positioning or 3D genome interaction) at the single-nucleotide level.
Other research that utilizes DNA shape as a featurewould likely benefit
from the use of the DeepDNAshapemethod. To further improveDeep
DNAshape, one could focus on generating additional simulation data,
optimizing theDNA shape inference equation or network architecture,
and expanding the model to include chemically modified bp63 or
mismatched bp11, if such data could be acquired on a large scale.

Methods
DNA structural simulations and DNA shape analyses
DNA sequences with variable lengths are initialized and simulated by
a Monte-Carlo (MC) method27. After filtering out artifacts, the total
number of valid DNA simulations is 2,12127. DNA shape features are
then calculated by Curves (version 5.3)12,25 and minor groove width
(MGW) is symmetrized with respect to each bp27. Data are pooled
into a training file that includes all DNA sequences and their corre-
sponding DNA shape values. DNA shape fluctuation values are also
calculated by Curves through analyzing the sampling process from
the MC simulations. Fluctuation values represent the variance that
occurred during simulations. These values can be viewed as a cor-
related measure of DNA conformational flexibility of an individual
DNA molecule. In this study, the addition of ‘-FL’ to a DNA shape
feature indicates the fluctuations (FL) of that specific DNA shape
feature. Note that DNA shape can be derived from other data sour-
ces (see Supplementary Methods).
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Definitions of DNA shape features
DNA shape features are used to describeDNA structure numerically, in
a bp-to-bp manner. The set of DNA shape features used includes six
inter-bp features, six intra-bp features, and twominor groove features.
Additional DNA shape features include helical axis features and back-
bone torsion features, which canbe analyzed and predicted if supplied
to the model. Inter-bp features are used to describe translational dis-
tances (in Å) and rotational angles (in °) between adjacent bp. Speci-
fically, the six inter-bp features are ‘Shift’, ‘Slide’, ‘Rise’, ‘Tilt’, ‘Roll’, and
‘Helix twist (HelT)’ (Fig. 1g). The intra-bp features describe the trans-
lational distances and rotational angles between two bases in a single
bp. The six intra-bp features are ‘Shear’, ‘Stretch’, ‘Stagger’, ‘Buckle’,
‘Propeller twist (ProT)’, and ‘Opening’ (Fig. 1g). The minor groove
features describe the groove geometry and electrostatic potential in
the center of the minor groove. The groove features used in this study
are ‘Minor groove width (MGW)’ (Fig. 1g) and ‘Electrostatic Potential
(EP)’29. For detailed information, refer to28.

Pre- and post-processing of DNA shape values
To ensure robustness in our DNA shape analysis, we utilized a nor-
malization method to account for different ranges of minimum and
maximumvalues of DNA shape features.We compensated for extreme
values (e.g., from simulation artifacts) by using the following normal-
ization equation:

Ŝ= ðS� eSÞ=ðS1st � S99thÞ ð1Þ

Here, S represents the DNA shape feature analyzed from the MC
simulation. eS denotes the median of the DNA shape feature values
within the dataset, while S1st and S99th mark the first percentile and last
percentile of the sorted DNA shape feature values, respectively. After
normalization, Ŝ may still exceed the range of −1 to +1 for extreme
values. However, during the training process, the tanh activation
function enforces a strict upper and lower bound of S1st and S99th,
ensuring that the output remainswithin a normalized range of −1 to +1.
In postprocessing of the model output, given the normalized DNA
shape values predicted by ourmodel, S can be directly computed from
Ŝ using the reverse of the above equation given knowledge of eS, S1st ,
and S99th.

Definition of the DNA shape layer
The DNA shape layer is used to treat linear DNA sequences as double-
linked nodes or a graph, where each node can be a single nucleotide or
dinucleotide. Each node is connected by its 5’ node and 3’ node
through a forward and a backward ‘bond’ (edge). To compute the
output features eXi of the shape layer, features are gathered for each
node from the previous node (Xi�1), current node (Xi), and next node
(Xi+ 1). eXi is computed through the following equation,

fX i = f σðλ � X i +αÞ,X i

� � ð2Þ

where,

λ=ω1 � X i�1 +ω2 � X i+ 1 +B1

α =θ1 � X i�1 +θ2 �X i + 1 +B2 ð3Þ

f is a trainable gated recurrent unit (GRU) cell with a sigmoid recurrent
activation function and tanh activation function. σ is ReLu activation
followedby batch normalization function.ω1, ω2, θ1, θ2, B1 and B2 are
trainable variables to be learnt from the dataset by themodel. The self-
shape layer is a one-dimensional convolutional layer that transforms
the feature number to match later DNA shape layers. The feature
dimension remains the same for all DNA shape layers.

Dropout layers and average layers
For eachDNA shape layer, a feature vector is generated for every node
in the DNA sequence. To prevent overfitting, the feature vector passes
through a dropout layer. During prediction, the dropout layer is not
used. Finally, the feature vectors are averaged into a single value and
post-processed to remove the effects of normalization before making
a prediction.

DNA sequence encoding
To represent the DNA sequences, four characters, ‘A’, ‘C’, ‘G’ and ‘T’ are
used, and are one-hot encoded into four arrays as [1,0,0,0], [0,1,0,0],
[0,0,1,0] and [0,0,0,1]. For example, a sequence, ‘ACGTGCG’, is
represented as

A

C

G

T

G

C

G

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 0

0 1 0 0

0 0 1 0

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

ð4Þ

To represent the DNA sequences as dinucleotides, one-hot
encoding for dinucleotides was used. Each dinucleotide will be
assigned a vector with 16 binary values to represent 16 possible dinu-
cleotide combinations. The same example ‘ACGTGCG’will be encoded
as

AC

CG

GT

TG

GC

CG

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

=

0100,0000,0000,0000

0000,0010,0000,0000

0000,0000,0001,0000

0000,0000,0000,0010

0000,0000,0100,0000

0000,0010,0000,0000

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

ð5Þ

An unknown nucleotide ‘N’ can also be represented this way,
where ‘N’ will be a vector by taking the average values upon all
possible values. In the implementation of Deep DNAshape, to bal-
ance the degree of freedom of the terminal bases, ‘N’ caps are
added to both terminals, but they are removed in the final predic-
tion. These ‘N’ caps have a 3’ bond and a 5’ bond connected to
themselves.

Deep DNAshape model design and learning objectives
The model is designed for step-by-step, expandable learning of DNA
shape features for any given DNA sequence, with input as one-hot-
encoded DNA sequences and output as predicted DNA shape features
for each position on the sequence. Inter-bp DNA shape features are
encoded as dinucleotides, and sequences are represented as linear
double-linked nodes. Mean absolute error (MAE) is used as the loss
function, calculated between predicted and MC-simulated DNA shape
values from output layers. A postprocessing step is used to recover
DNA shape values from normalization. Individual models are trained
for each DNA shape feature, with one ‘self’ convolutional layer for
input and seven ‘shape layers’ following it.

Hyperparameter search
Hyperparameters for the DeepDNAshapemodel include learning rate,
optimizer, filter size, and others. These hyperparameters are grid
searched for each DNA shape feature and evaluated on a separate
training and validation dataset. The best-performing hyperparameters
are selected and applied to all DNA shape features. After hyperpara-
meter searches, the model parameters are set as follows: number of
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shape layers: 7, learning rate: 0.05, number of epochs: 1500, optimizer:
stochastic gradient descent (SGD) with momentum 0.95, dropout
ratio: 0.5 and filter size: 64.

Data of TF-DNA binding assays
We collected and used relative binding affinity data captured in mul-
tiple experiments, the same as were used in28. The genomic-context
PBM data include human TFs c-Myc, Max, and Mad264, with ‘Max’
representing a Max-Max homodimer, ‘c-Myc’ a c-Myc-Max hetero-
dimer, and ‘Mad2’ a Mad2-Max heterodimer. HT-SELEX data include
many TFs in multiple TF families65. SELEX-seq data include TFs in the
Hox family from Drosophila5,7.

L2-regularized multiple linear regression model for TF-DNA
binding prediction
The L2-regularized multiple linear regression model is designed to
predict relative TF-DNA binding specificity from the data of the TF-
DNA binding assays28. The model encodes DNA sequences as k-mer
(k = 1,2,3) sequence features and any number of DNA shape features.
Unless otherwise specified, ‘4shape’ indicates four shape features
including MGW, ProT, Roll, and HelT, and ‘13shape’ indicates MGW
plus the 6 inter-bp features and 6 intra-bp features. The DNA shape
features are normalized according to the minimum, maximum, and
standard deviation seen in the dataset. Input data are separated into
10 folds. In each fold of the training and test data, another 10-fold
cross validation is used in the training data to select lambda values
for the L2 term. The model then uses the selected lambda to fit the
training data and predict the values for the test data. In the end, 10
folds of predictions are combined to assess the model performance
as R2. The number of sequence features, for sequences with length n,
is 4n for 1-mers, 16 � ðn� 1Þ for 2-mers, and 64 � ðn� 2Þ for 3-mers.
The number of shape features, for sequences with length n, is n for
each bp feature and groove feature, and n� 1 for each bp step
feature.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TF-DNA binding datasets were derived from public resources (see
Methods, Data of transcription factor (TF)-DNA binding assays). Raw
data for the underlying training datasets (MC, MD and Expt) were
sourced from reference27 and public databases (see Supplementary
Methods for details). PDB IDs used in the main text are 1AN2, 2R5Z
and 4CYC. Process data of TF-DNA binding and underlying training
data are deposited at Zenodo <https://doi.org/10.5281/zenodo.
10403307>. Source data are provided with this paper.

Code availability
All code was implemented in Python. All code related to training,
prediction, and the pre-trained models – as well as an executable
package for predicting DNA shape features from any DNA sequence –

can be found at https://github.com/JinsenLi/deepDNAshape66. All
source code is provided under an BSD-3-Clause software license.
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