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Supporting Materials and Methods 

Data explanation and preprocessing 

Unmethylated DNA 
In the last decade, many high-throughput (HT) methods have been developed to quantify 
transcription factor (TF)-DNA binding. These methods include electrophoretic mobility shift assay 
(EMSA)-based SELEX-seq (1, 2), bead-based HT-SELEX (3, 4), genomic-context protein-binding 
microarray(gcPBM) (1), and microfluidics-based SMiLE-seq (5) platforms. Owing to the capability 
to quantify a wide range of binding affinities and thus fully characterize TF-binding specificities 
(6), in this study, we trained our DeepRec method mainly on SELEX-seq data for TFs, including 
the Max homodimer (MAX), myocyte enhancer factor-2B (MEF2B), tumor suppressor protein 
(p53), activating transcription factor 4 (ATF4), and CCAAT/enhancer-binding protein beta 
(C/EBPβ). To assess the accuracy of DeepRec predictions, for MAX, we constructed DeepRec 
on microfluidics-based SMiLE-seq for cross-platform validation. 
 
In this study, sequencing data for MAX derived from the SELEX-seq platform were downloaded 
from the European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena/) under study identifier 
PRJEB25690. Data for MAX derived from the SMiLE-seq platform were downloaded from the 
Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra) under accession number 
SRP073361. Data for MEF2B derived from the SELEX-seq platform were downloaded from the 
Gene Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE116401. 
Data for p53, ATF4, and C/EBPβ derived from the SELEX-seq platform were downloaded from 
ENA (https://www.ebi.ac.uk/ena/) under study identifier PRJEB25690.  
 
DeepRec models the relative binding affinities for the first-round (R1) SELEX-seq data. The R1 
data covers more optimal information than later selection rounds of the data, which suppresses 
the low-affinity ligands and includes more experimental errors from the application process. The 
zero-round (R0) SELEX-seq data are a set of reads sequenced from a random library of DNA 
ligands. Sequencing data were pre-processed to trim the 3’ ends containing adapters and 
indexing regions. A fifth-order Markov model was generated based on R0 data. Relative binding 
affinities for oligomers of various length k with a defined threshold count were estimated, and the 
information gain (Kullback-Leibler divergence) associated with two rounds of affinity-based 
selection (R0 to R1) was calculated based on the SELEX method (7) available at Bioconductor 
(https://bioconductor.org/packages/SELEX). We chose k that optimally captures the DNA binding 
specificity for each TF, and the refined dataset tables were used to perform DeepRec. 

Methylated DNA 
Recently, more in vitro approaches have been developed to probe the sensitivity of TF binding to 
methylated DNA, including EMSA-based EpiSELEX-seq (8), methyl-Spec-seq (9), bead-based 
methyl-SELEX (10), and PBM-based methyl-PBM (11). In this study, we trained our DeepRec 
approach to model the relative binding affinities on EpiSELEX-seq data for ATF4 and C/EBPβ. 
Sequencing data were downloaded from ENA (https://www.ebi.ac.uk/ena/) under identifier 
PRJEB25690.  
 
Each dataset contains a methylated library (Lib-M) and unmethylated library (Lib-U) that can be 
distinguished by their barcodes (8). Sequencing data for Lib-M and Lib-U were both analyzed 
using the SELEX tool (7) with the same procedure for analysis of unmethylated DNA (12). 
Relative affinities for oligomers of length k were estimated by calculating the oligomer enrichment 
for R1 counts compared to the expected count as obtained from a Markov model prediction of R0. 
Fold-enrichment was normalized based on the most enriched oligomer. In the case of ATF4, the 
most highly enriched 10-bp sequence differed between Lib-U and Lib-M, due to the presence of a 
repressive effect of methylation at the central CpG dinucleotide. Therefore, libraries were 
normalized by their shared most enriched oligomer. For the remaining datasets, the most 
enriched data points were the same, so we simply combined them (8). Data shown in Figure 6 AB 



 
 

3 

and Supporting Figure S4 are PSAM-filtered Lib-M and Lib-U relative affinities and their 
respective oligomer sequences (8). Data for ATF4 and C/EBPβ were downloaded from the NCBI 
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo) under accession number 
GSE98652. The pipeline to process EpiSELEX-seq and SMiLE-seq data in DeepRec is available 
on GitHub (https://github.com/satyanarayan-rao/public_data_processing_for_deeprec). 
 

DeepRec model construction 
Data preparation  
The refined dataset tables generated by the SELEX R-package (7) are input subjected to 
DeepRec. The input consists of two variables, X and Y. Variable X encompasses the k-mer 
sequences denoted ‘Kmer’. Variable Y encompasses the corresponding binding affinities denoted 
‘SymmetrizedAffinity’ that averages binding affinities from forward and reverse complement 
sequences. Rows with reverse complement sequences were removed, and data were split into 
training and validation sets with a 90:10 split. Variable X was appended with the corresponding 
reverse complement sequences with a padding of zeros and was encoded by following the 
encoding schema (see Material and Methods). Notably, the encoding schema can apply to 
modified DNA and non-Walson-Crick DNA without expanding the data dimension. The 
multidimensional arrays are stored in HDF5 format. 
 
Feature encoding 
Major groove encoding 
In the major groove, a G/C base pair has a unique physicochemical signature ‘AADN’ (‘A’: H-
bond acceptor; ‘D’: H-bond donor; ‘N’: nonpolar hydrogen), which differs from the signature of a 
C/G base pair ‘NDAA’, the A/T signature ‘ADAM’, and the T/A signature ‘MADA’ (‘M’: thymine 
methyl group) (Figure 1, S1). We encode the physicochemical signatures as binary vectors 
A=[0,0,0,1], D=[0,0,1,0], M=[0,1,0,0], and N=[1,0,0,0]. We further encode the major-groove 
signature of each base pair as a 4 × 4 binary vector, as follows: 
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Minor groove encoding 
In the minor groove, the A/T base pair shares the same pattern (‘ANA’) with the T/A base pair. 
Likewise, the G/C and C/G base pairs share the same pattern (‘ADA’). Using the same signature 
vector for encoding, we can encode the minor-groove signature of each base pair as a 3 × 4 
binary vector: 
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The encoding method can be extended to non-Watson–Crick base pairs, including Hoogsteen, 
synthetic, and mismatched base pairs, without increasing the feature dimension. In contrast, the 
sequence-based model introduces entirely new letters of the sequence alphabet when using the 
one-hot encoding method, which would increase the dimension of input features by making them 
sparse, which might result in an overfitting issue. Using a different letter for a modified base pair 
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also implies independence, for instance of a methylated cytosine from cytosine despite the largely 
overlapping chemical characteristics of C/G and 5mC/G base pairs (13). 
 
DeepRec model design 
DeepRec consists of a major-groove physicochemical module, a minor-groove physicochemical 
module with two convolutional layers, a joint module that integrates signals from the two 
physicochemical modules, and an output layer that computes the relative TF-binding affinities for 
each probe (Figure 2). Each module stacks two convolutional layers with 2×2 filters followed by 
filters of 4×6 for the major groove and 3×6 for the minor groove. The smaller filters mimic the 
behavior of a residue that recognizes the physicochemical signatures of bases. The larger filters 
extract patterns in a wider scope, mimicking the behavior of a protein-binding domain. 

In the DeepRec model, the output 𝑓(𝑠) for sequence 𝑠 is computed by a feed-forward expression 
beginning with convolution and ending in a fully connected neural network. The parameters of the 
two layers’ filters 𝑀!"#$%! , 𝑀!"#$%" , 𝑀!&'$%! , and	𝑀!&'$%" ,	 the thresholds of activation functions 
𝑏1()*+,, 𝑏2()*+,, 𝑏1(-.+,	and		𝑏2(-.+,, and the parameters of joint layer and fully connected neural 
networks 𝑊/	and		𝑊0 are trainable: 
 
𝑓(𝑠) = 𝑛𝑒𝑡1!(𝑗𝑜𝑖𝑛1"(𝑓!"#$%(𝑠), 𝑓!&'$%(𝑠)))  
𝑓!"#$%(𝑠) = 𝑝𝑜𝑜𝑙(𝑎𝑐𝑡𝑖20#$%&'(𝑐𝑜𝑛𝑣!"#$%"(𝑝𝑜𝑜𝑙(𝑎𝑐𝑡𝑖2/#$%&'(𝑐𝑜𝑛𝑣!"#$%!(𝑒𝑛𝑐𝑜!"#$%(𝑠))))))  
𝑓!&'$%(𝑠) = 𝑝𝑜𝑜𝑙(𝑎𝑐𝑡𝑖20#()&'(𝑐𝑜𝑛𝑣!&'$%"(𝑝𝑜𝑜𝑙(𝑎𝑐𝑡𝑖2/#()&'(𝑐𝑜𝑛𝑣!&'$%!(𝑒𝑛𝑐𝑜!&'$%(𝑠))))))  
 
Major groove physicochemical module 
The major-groove module comprises CNNs with one convolutional and one pooling layer, and a 
fully connected hidden layer. Each layer of CNNs executes a linear transformation of the output 
from the previous layer by multiplying a weight matrix, followed by a nonlinear transformation. 
The weight matrix is learned during training to minimize predictive errors. The module takes 
major-groove physicochemical signatures of user-defined length (l) as input, which is represented 
as a binary matrix in dimensions of 4 × 4𝑙. 
 
The convolution layer convolves the 2D physicochemical profile (a)2D image) at every position (i, 
j) by using filter 𝑊3:  

𝑐𝑜𝑛𝑣(𝑋)&#3 = 𝑅𝑒𝐿𝑢 JK KK𝑊!'4
3 𝑋&5!,#5',4

78/

49:

;8/

'9:

<8/

!9:

L 

 
where X is the input, i and j are the indices of the output position (i is the index of the 
physicochemical signature position; j is the index of the base-pair position), and k is the index of 
the filters. Each convolution filter 𝑊3 is an 𝑀 ×𝑁 × 𝐷 weight matrix, where M is the filter height, N 
is the filter width, and D is the number of input channels (here, D = 4, i.e., H-bond acceptor, H-
bond donor, methyl group and nonpolar hydrogen). ReLU represents the rectified nonlinear 
function: 
 

𝑅𝑒𝐿𝑈(𝑥) = O
𝑥, 𝑖𝑓	𝑥 ≥ 0
0, 𝑖𝑓	𝑥 < 0 

 
The pooling layer computes the maximum value in a window of the convolution layer outputs for 
each filter. To decrease the dimension of the input and the number of model parameters, non-
overlapping pooling with window size 𝑀 ×𝑁 is applied. The pooling operation is defined as: 
 

𝑝𝑜𝑜𝑙(𝑋)&#3 = 𝑚𝑎𝑥ST𝑋=,>,3UV	 
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where X is the input, i and j are indices for the output position, k is the index of filters, 𝐴 =
{𝑖𝑀, 𝑖𝑀 + 1,⋯ , (𝑖𝑀 +𝑀 − 1}, and 𝐵 = {𝑗𝑁, 𝑗𝑁 + 1,⋯ , (𝑗𝑁 + 𝑁 − 1}, where M and N are the height 
and width of the pooling window size, respectively. 
 
Minor groove physicochemical module 
The minor-groove module is nearly identical to the major-groove module. The only difference is 
that the minor-groove module takes as input the minor-groove physicochemical signatures, 
represented as a binary matrix with dimensions of 3 × 4𝑙. 
 
Joint module 
To model interactions between extracted physicochemical signatures from the major- and minor-
groove modules, the joint module has one hidden layer with the ReLU activation function, which 
is connected to all neurons of the last layers of the major- and minor-groove modules. One output 
neuron with the sigmoid activation function is connected to outputs from the hidden layer, which 
predicts the relative TF binding affinity: 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒8? 
 
Model training with DeepRec 
 
Model parameters are initialized randomly (14) and learned on the training dataset by minimizing 
the Mean Squared Error (MSE) loss function and regularization terms for controlling overfitting: 
 

𝐿𝑜𝑠𝑠(𝑤) = 𝑀𝑆𝐸@(𝑦c, 𝑦) + 𝜆/‖𝑤‖/ +	𝜆0‖𝑤‖0 

𝑀𝑆𝐸@(𝑦c, 𝑦) =
1
𝑁K

(𝑦' − 𝑦'f)0
;

'9/

 

 
The loss function is optimized by mini-batch stochastic gradient descent with a batch size of 128 
and a global learning rate of 0.001. The learning rate was adapted from Adam (15). DeepRec 
was implemented in Python 2.7.18 using Tensorflow 2.0+ and Keras 2.3.1. We initially trained 
and tested the DeepRec model using a single NVIDIA tesla K80 GPU. 
 
Model tuning 
To select an ideal model architecture automatically, DeepRec performs hyperparameter 
optimization using an exhaustive grid search through a specified subset of the hyperparameter 
space. The search is guided by a performance metric, i.e. r-squared, measured by three-fold 
cross-validation on the training set. The grid search outputs the settings that achieve the highest 
r-squared. In this study, we randomly chose 100 hyperparameters from the hyperparameter 
space summarized in Table S1. 
 
Ensemble modeling 
Neural network models have high variance by nature due in part to nonlinearity. To reduce the 
variance of predictions and prevent generalization errors, DeepRec trains multiple models instead 
of a single model and combines predictions from these models. DeepRec selects the model with 
the best performance obtained from model tuning and trains 100 models with different random 
seeds. The resulting models were sorted by their validation r-squared, and the best 0.5 quantile 
was selected for later analysis. 
 
Model interpretation 
To interpret the predictive models, DeepRec uses a perturbation-based forward propagation 
method, which perturbs the input and probes its possible effects on the prediction of the network. 
By nullifying each signature of the input physicochemical signatures with [0.25, 0.25, 0.25, 0.25], 
DeepRec investigates the relative binding affinity changes in the output. The difference in terms 
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of relative binding affinity will be converted to energy. To assess a physicochemical signature of a 
TF that contributes to binding free energy (∆∆𝐺/𝑅𝑇), we compared the difference between the 
binding free energies with and without such the physicochemical signature and calculated 
∆∆∆𝐺/𝑅𝑇 for the physicochemical signature of the top binding site, where 
 

∆∆∆𝐺
𝑅𝑇 =

∆∆𝐺
𝑅𝑇 %ABA%A'CA

−
∆∆𝐺
𝑅𝑇 %ABA%A'CA	@&EF	'GHH&B&A4	I&J'"EG%A

 

 
We calculate this for each selected model and average the difference to plot the height of each 
physicochemical signature. The letter (A, D, M, N) represent H-bond acceptor, donor, methyl-
group, and nonpolar hydrogen, respectively. The height represents −∆∆∆𝐺/𝑅𝑇. We also 
calculated the standard error to the mean (SEM), which is represented as a vertical bar. 

DeepRec sequence model 
We developed a DeepRec sequence model and compared it to the original DeepRec version 
(which encodes DNA as a set of physicochemical signatures). The architecture of the DeepRec 
sequence model is similar to DeepBind (16). The model considers DNA as a 1D string and 
encodes input DNA sequence as one-hot binary vectors, where A=[1,0,0,0], C=[0,1,0,0], 
G=[0,0,1,0], and T=[0,0,0,1]. The DeepRec sequence model consists of a single convolutional 
layer with 1×6 filters, followed by a pooling layer and a target layer to predict relative binding 
affinities.  
 
The DeepRec sequence model uses the same perturbation-based forward propagation method 
as the original version of DeepRec to generate sequence logos and interpret the model. The 
DeepRec sequence model calculates the binding free energy (∆∆𝐺/𝑅𝑇) changes in output by 
nullifying each base pair of the input sequence with the vector [0.25, 0.25, 0.25, 0.25] at a time. 
To assess a base pair’s contribution to binding free energy (∆∆𝐺/𝑅𝑇), we compared the 
difference between the binding free energies with and without that base pair and calculated 
∆∆∆𝐺/𝑅𝑇 for the base pair in reference to the top binding site, where 
 

∆∆∆𝐺
𝑅𝑇 =

∆∆𝐺
𝑅𝑇 %ABA%A'CA

−
∆∆𝐺
𝑅𝑇 %ABA%A'CA	@&EF	'GHH&B&A4	2"IA	K"&%

 

 

Performance comparison  
DeepRec was compared with DeepBind (16) and FeatureREDUCE (17, 18), the top two highest-
scoring methods compared in (16). DeepBind is a method based on deep convolutional neural 
networks, and FeatureREDUCE is a method that combines position weight matrix (PWM) and k-
mer models. For the DeepBind method, we selected the best parameter setting from 100 
calibrations and ran 10 replicates for each comparison. For FeatureREDUCE, we used the 
default setting and did 10 random training test partitions for each comparison. To compare how a 
k value affects model performance, we tested the k-mer value in FeatureREDUCE and the filter 
size in DeepBind from 4 to 10. The adapted codes for DeepBind and FeatureREDUCE are 
available on GitHub: https://github.com/TsuPeiChiu/DeepBind and 
https://github.com/satyanarayan-rao/FeatureREDUCE. 
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Supporting Figures 
 

 
 
Supporting Figure S1. Comparison of physicochemical energy logos of MAX based on the (A) 
SMiLE-seq and (B) SELEX-seq data.  
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Supporting Figure S2. Comparison of relative binding affinities measured by SMiLE-seq and 
predicted by the model trained by the SELEX-seq data.  
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Supporting Figure S3. Selected DNA physicochemical energy logos for control, where the 
relative binding affinities of the training data were shuffled. 
 
 
 
 
 
 
 
 
 
 



 
 

11 

 
 
Supporting Figure S4. Comparison between relative binding affinities for a methylated sequence 
library (Lib-M) versus an unmethylated sequence library (Lib-U). (A, B) Binding affinities were 
predicted by DeepRec on a combined dataset of Lib-M and Lib-U for ATF4 (A) and C/EBPβ (B). 
(C-F) Binding affinities were obtained from EpiSELEX-seq for ATF (C, E) and C/EBPβ (D, F) with 
different affinity ranges. (G-J) Binding affinities were predicted by DeepRec on an unmethylated 
dataset derived from SELEX-seq for ATF4 (G, I) and C/EBPβ (H, J) with different affinity ranges. 
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Supporting Figure S5. DeepRec models are robust. For a given TF dataset (X-axis), 50 
DeepRec models were trained with different random seeds. Model performance measured as R-
squared shows that the performance is consistent.  
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Supporting Table S1. Hyperparameters for DeepRec models. 
 

Hyperparameters Values 
learning rate [0.01, 0.001, 0.0001] 
number of epoch [100] 
batch size [128, 256] 
filter length 1 [2] 
filter length 2 [6] 
number of filter 1 [8, 16] 
number of filter 2 
alpha 1 
l1 ratio 1 

[8, 16] 
[0.001, 0.0001, 0.00001] 
[0, 0.1, 0.2, 0.4, 0.8, 1] 

number of node in joint layer 
alpha in joint layer 
l1 ratio in joint layer 

[16, 32, 64] 
[0.001, 0.0001, 0.00001] 
[0, 0.1, 0.2, 0.4, 0.8, 1] 

drop out in joint layer [0, 0.01, 0.02] 
 


